
Confidence in soil carbon predictions undermined by the uncertainties
in observations and model parameterisation

Zhongkui Luo a, *, Enli Wang a, **, Quanxi Shao b, Mark K. Conyers c, De Li Liu c

a CSIRO Agriculture, GPO Box 1666, Canberra, ACT 2601, Australia
b CSIRO Digital Productivity & Services, Private Bag 5, Wembley, WA 6913, Australia
c NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, NSW 2650, Australia

a r t i c l e i n f o

Article history:
Received 17 March 2015
Received in revised form
8 December 2015
Accepted 8 February 2016
Available online 23 February 2016

Keywords:
Carbon cycle
Carbon sequestration
Measurement uncertainty
Model optimisation
Prediction uncertainty

a b s t r a c t

Soil carbon (C) responds quickly and feedbacks significantly to environmental changes such as climate
warming and agricultural management. Soil C modelling is the only reasonable approach available for
predicting soil C dynamics under future conditions of environmental changes, and soil C models are
usually constrained by the average of observations. However, model constraining is sensitive to the
observed data, and the consequence of using observed averages on C predictions has rarely been studied.
Using long-term soil organic C datasets from an agricultural field experiment, we constrained a process-
based model using the average of observations or by taking into account the variation in observations to
predict soil C dynamics. We found that uncertainties in soil C predictions were masked if ignoring the
uncertainties in observations (i.e., using the average of observations to constrain model), if uncertainties
in model parameterisation were not explicitly quantified. However, if uncertainties in model parame-
terisation had been considered, further considering uncertainties in observations had negligible effect on
uncertainties in SOC predictions. The results suggest that uncertainties induced by model parameter-
isation are larger than that induced by observations. Precise observations representing the real spatial
pattern of SOC at the studied domain, and model structure improvement and constrained space of pa-
rameters will benefit reducing uncertainties in soil C predictions. The results also highlight some areas on
which future C model development and software implementations should focus to reliably infer soil C
dynamics.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Integrated approaches such as process-based mechanistic
models are increasingly used to systematically explain, explore and
predict responses of natural and human-managed systems to
environmental changes (Holzworth et al., 2015; Laniak et al., 2013).
Under changing environmental conditions such as global warming
and land management change, soil carbon (C) dynamics are
particularly important as their core role in determining the C and
nutrient cycling in terrestrial ecosystems and the relevant envi-
ronmental footprints. Soil C models are the only reasonable
approach available for assessing soil C dynamics across spatio-
temporal scales and for understanding mechanisms underpinning
soil C stability under various environments (Friedlingstein et al.,

2006; Thornton et al., 2007). In order to use these models to
design effectivemanagement strategies, it is vital to understand the
confidence level in model predictions (Bennett et al., 2013, Kelly
(Letcher) et al., 2013). A number of studies have recognised that
the reliability of model predictions must be carefully assessed due
to uncertainties in model inputs, model parameters and structure,
and scaling of model outputs etc (Clifford et al., 2014; He et al.,
2014; Luo et al., 2013; Ogle et al., 2010; Post et al., 2008; Xia
et al., 2013). An additional source of uncertainty comes from the
spatial variability in soil C measurements that are used to constrain
soil C models, and has not been explicitly quantified in current soil
C modelling.

Most soil C models divide soil C into several conceptual pools
with different decomposability, and simulate decomposition of
each pool by first-order kinetics (Smith et al., 1997). Some of the
pools cannot be directlymeasured and there is no agreed process to
initialise these pools with bulked measurements of total soil C. As a
result, derivation of the decomposition rate of those pools is con-
strained by local observed data of total SOC. The commonpractice is
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to derive a single set of model parameters that enables a good
match between simulated soil C and the average of measured soil C
(based on different replicates) at a given time. Such constrained
models are then used to predict possible soil C changes under
different management practices across environments (Grace et al.,
2006; Li et al., 2003; Lugato et al., 2014; Todd-Brown et al., 2014).

Such predictions are subject to unknown uncertainties. Firstly,
the uncertainty in initialisation of soil C pools interacts with the
uncertainty in derived decomposition rates. For example, similar
model performance can be achieved either by optimising decom-
position rates or by partitioning total soil C to different conceptual
pools with different decomposition rates. Secondly, inaccuracy and/
or variability in bulked measurements of total soil C further impact
on the initialisation and parameterisation of the model. As a result,
model initialisation and parameterisation become very sensitive to
the data that are used for model constraining (Hararuk et al., 2014;
Juston et al., 2010; Keenan et al., 2012; Xenakis et al., 2008; Ogle
et al., 2010; Weng and Luo, 2011). Even at the field scale, great
spatial variability exists in soil properties including soil C
(Cambardella et al., 1994). For example, Zhou et al. (2008) demon-
strated that soil C varied strongly spatially and its spatial autocor-
relation only occured in ~2 m of distance in a grazed grassland.
Todd-Brown et al. (2013) suggested that uncertainty in bulked
measurements of soil C content must be integrated with errors
involved in extrapolating the data from individual soil profiles to the
regional scale. This spatial variability makes it difficult, if not
impossible, to derive the real estimate of average soil C for model
initialisation and/or parameterisation based on limited samples.

To date, however, most of studies focused on the uncertainty in
model inputs in terms of limited availability of a specific data source
(e.g., edaphic characteristics at higher resolution, and information
on land use and management) that is needed to initialise and/or
parameterise the model (Falloon et al., 2011; Luo et al., 2013).
Some other studies also addressed the effect of data derived from
different environments on model parameterisation thereby model
outputs (Hararuk et al., 2014; Juston et al., 2010). In this study, we
used a process-based biophysical model, the Agriculture Production
Systems sIMulator APSIM (Holzworth et al., 2014; Keating et al.,
2003), together with a long-term soil organic C observational
(measured 20 times during a 25-year experiment) dataset, to
quantify: 1) the potential uncertainty in soil C predictions caused by
model initialisation and parameterisation, and 2) the additional
uncertainty caused by the variation in soil C measurements that are
used for model initialisation and parameterisation. For the latter,
the variation in replicates for each of the 20 observations during a
25-year agricultural experiment were investigated when using
the data to constrain themodel. The results can provide insights into
the collection of effective data sets for model constraining and
development of next generation models.

2. Materials and methods

2.1. Study site and data source

The field experimental data collected by the Wagga Wagga
Agricultural Institute of NSW Department of Primary Industries
was used in this study. The experimental site was located at the
Wagga Wagga, New South Wales, Australia (35.11�S, 147.37�E). It
has a temperate climate with uniform rainfall distribution across
the year. Mean annual temperature was 15.9 �C and mean annual
rainfall was 538 mm. The soil is a chromic luvisol, and the site was
maintained as an annual pasture for 19 years from 1960 to 1978,
except for a crop of lupins (Lupinus Angustifolius) in 1975 and oats
(Avena Sativa) in 1976. The surface 10 cm soil was a clay loam with
29% clay, 15% silt and pH 4.9 in 1979. Data collected under two

treatments, continuous wheat with (100 kg N ha�1 yr�1, N100) and
without nitrogen (N0) fertilizer application, were used for this
study. In both treatments, crop residues were burned, and the soil
organic C content (%) in the 0e10 cm soil layer was observed 20
times for each treatment from 1979 to 2004, each time with five or
up to 12 replicates for each observation (Fig. 1). Soil bulk density
was also measured along with the measurement of soil C content,
and they were used to calculate soil C stock (t ha�1). More detailed
information on experimental design, soil sampling strategy, land
use, soil conditions, management and observations for this exper-
iment can be found in Heenan et al. (2004, 1995).

2.2. The APSIM model

The Agricultural Production Systems sIMulator APSIM
(Holzworth et al., 2014; Keating et al., 2003) was used to simulate
the observed soil C dynamics in the two treatments (N0 vs N100).
The APSIM model is a process-based bio-physical model designed
to study productivity, nutrient cycling and environmental impacts
of farming systems as influenced by climate variability and man-
agement interventions. The ability of APSIM to simulate soil C and
soil nitrogen (N) dynamics has been verified under various crop-
ping systems and agricultural management (Luo et al., 2011;
Probert et al., 1998). The model divides soil C into six pools and
simulates each pool as a first-order process with the rate constants
being modified by factors involving soil temperature, moisture and
nutrient availability in the soil layer, which is similar to other
widely used soil C models such as Century (Parton et al., 1987) and
RothC (Jenkinson, 1990). A detailed conceptual diagram of the
model for simulating soil C dynamics is presented by Probert et al.
(1998) and Luo et al. (2014).

The APSIM runs on a daily time-step and needs daily weather
data as inputs, including radiation, maximum and minimum tem-
peratures, and rainfall. Other required soil parameters includes soil
C content, C to N ratio of the bulk soil, soil bulk density, hydraulic
parameters, initial soil water and nutrient conditions (NO3

� and
NH4

þ) in each soil layer. All these data and the relevant model ini-
tialisation and parameterisation processes were adopted from two
former APSIM simulation studies using the same dataset by Luo
et al. (2014, 2011).

2.3. Constraining the APSIM model

The model was constrained with observed soil C data from the
N0 and N100 treatments. Model parameters were derived through
constraining model simulations against the observed data from
both treatments. Two parameters were targeted: the potential
decomposition rate of humic C pool (rdhum) and the amount of
recalcitrant C pool in total soil C (finert). The two parameters
directly control the turnover time and decomposability of soil C.
Sensitivity analysis of eight main parameters that directly link to C
decomposition has indicated that these two parameters were the
two most important parameters to which soil C dynamics are most
sensitive in the APSIM model (Luo et al., 2015).

Three optimisation strategies were used to optimise the model
byminimising the combined rooted mean of squared errors (RMSE,
i.e., the objective function for optimise and DEoptim, see below)
between simulated and observed soil C under the two treatments.
That is, 1) optimise finert only (Opt1), 2) optimise rdhum only
(Opt2), and 3) optimise rdhum and finert synchronously (Opt3). We
used the similar Bayesian approach of Yeluripati et al. (2009) to
derive the posterior distributions of the two parameters (finert and/
or rdhum). Both parameters were bounded within a range that is
biologically and physically possible, therefore eliminating solutions
in conflict with prior knowledge. For rdhum, we assumed that
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