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a b s t r a c t

This paper proposes a method for parameterizing the Poisson models for residential water demand pulse
generation, which consider the dependence of pulse duration and intensity. The method can be applied
to consumption data collected in households through smart metering technologies. It is based on
numerically searching for the model parameter values associated with pulse frequencies, durations and
intensities, which lead to preservation of the mean demand volume and of the cumulative trend of
demand volumes, at various time aggregation scales at the same time. The method is applied to various
case studies, by using two time aggregation scales for demand volumes, i.e. fine aggregation scale (1 min
or 15 min) and coarse aggregation scale (1 day). The fine scale coincides with the time resolution for
reading acquisition through smart metering whereas the coarse scale is obtained by aggregating the
consumption values recorded at the fine scale.

Results show that the parameterization method presented makes the Poisson model effective at
reproducing the measured demand volumes aggregated at both time scales. Consistency of the pulses
improves as the fine scale resolution increases.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, a substantial amount of research (e.g.,
Buchberger and Wu, 1995; Buchberger and Wells, 1996; Blokker
et al., 2010; Guercio et al., 2001; Alvisi et al., 2003; Buchberger
et al., 2003; Garcia et al., 2004; Alcocer-Yamanaka et al., 2006;
Alcocer-Yamanaka and Tzatchkov, 2012; Creaco et al., 2015a, b,
2016) has been carried out to set up user demand models at high
time resolution (down to 1 s). If suitably calibrated, these models
can be used to generate consistent demand pulses coming from a
single household or a group of households. Spatial and temporal
aggregation of the pulses through the “bottom-up” approach

(Walski et al., 2003) then enables reconstruction of nodal demand
trends, to be used inside water distribution models. Furthermore,
the local flow field given by these models can also be used as an
input to water-quality models that require ultrafine temporal and
spatial resolutions to predict the fate of contaminants moving
through municipal distribution systems (Buchberger and Wu,
1995).

Unlike the model proposed by Blokker et al. (2010), which re-
produces the demand from its respective micro components (i.e. by
adding up the single water uses), most models reproduce the
overall water demand, without distinguishing the contributions of
the various appliances of the user's. To this end, they use stochastic
processes such as the Poisson rectangular pulse process
(Buchberger and Wu, 1995; Buchberger and Wells, 1996; Guercio
et al., 2001; Buchberger et al., 2003; Garcia et al., 2004; Alcocer-
Yamanaka et al., 2006; Creaco et al., 2015a, b, 2016) or the
Neyman-Scott cluster process (Alvisi et al., 2003; Alcocer-
Yamanaka and Tzatchkov, 2012).

A basic assumption considered in the demand pulse generation
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models is the independence of duration and intensity at the level of
the single pulse (Buchberger and Wu, 1995; Buchberger and Wells,
1996; Guercio et al., 2001; Alvisi et al., 2003; Buchberger et al.,
2003; Garcıa et al., 2004; Alcocer-Yamanaka et al., 2006; Alcocer-
Yamanaka and Tzatchkov, 2012). On the basis of this assumption,
after generating pulse arrivals, mono-variate probability distribu-
tions, such as the exponential, normal and lognormal, are used to
generate the pulse durations and intensities in an independent
way.

However, by working out calculations on the data collected on
Milford households by Buchberger et al. (2003), Creaco et al.
(2015a) have recently shown that a non-negligible positive corre-
lation may exist between the two variables. Furthermore, Creaco
et al. (2015a) proved that Poisson models with correlated pulse
durations and intensities are advantageous compared to uncorre-
lated Poisson models. In fact, the use of suitably calibrated Poisson
models with correlated pulse durations and intensities enables
obtaining:

1 e statistically consistent pulse arrivals, durations and
intensities;

2 e consistent values of the daily demand in the household.

On the other hand, the same Authors showed that demand
pulses generated by uncorrelated Poisson models may fail to
comply with either condition. Other evidence of the advantages of
the correlated models was provided by Creaco et al. (2015b, 2016).

For model parameterization, Creaco et al. (2015a) proposed
using the methods of the moments (Hall, 2004), consisting in
setting the values of the parameters equal to the corresponding
values in the measured pulses. However, this method can only be
applied when data are available concerning the measured pulses.
Unluckily, this seldom happens. Actually, the only example of such
data in the scientific literature comes from the work of Buchberger
et al. (2003). On the other hand, the use of smart metering tech-
nologies is currently on the rise (Boyle et al., 2013). These tech-
nologies enable acquisition and storage of household water
consumption volumes with a very high temporal resolution (down
to 1 min), which is only lowered under conditions of limited log-
ging capacity (Mayer et al., 2004; Arregui et al., 2006; Kim et al.,
2008; Cominola et al., 2015). However, to the best of the authors'
knowledge, no methodology for parameterizing, through smart
meter readings, Poisson models with correlated pulse durations
and intensities has been proposed in the scientific literature so far.
A specific methodology for such a situation is proposed in this
paper, where the model parameters associated with pulse fre-
quencies, durations and intensities are searched for numerically, in
such a way as to preserve the mean demand volume and the cu-
mulative trend of demand volumes, as obtained through smart
metering, at various aggregation scales at the same time.

In the following sections, first the methodology is presented,
followed by applications, where data derived from iWidget project
were also used.

2. Methodology

Hereinafter, an overview of the Poisson model that considers
correlation between pulse durations and intensities is provided,
followed by the calibration procedure proposed.

2.1. Poisson model with correlated pulse durations and intensities

Inside the model, time axis is sampled with a certain time res-
olution Dt. The probability P of having z generated pulses in the
time interval Dt that follows the generic time t is described by the

Poisson distribution (Buchberger and Wu, 1995):

PðzÞ ¼ e�lDtðlDtÞz
z!

with z ¼ 0;1;… (1)

where l represents the expected number of “events” or “arrivals”
that occur per unit time.

For each pulse arrival, the corresponding duration T and in-
tensity I have to be generated. In order to preserve the correlation
between the two variables, a bivariate model can be used (Creaco
et al., 2015a). As an alternative, resorting algorithms can be used
to obtain correlation between the variables, when these are
generated independently (Creaco et al., 2016). In particular, the
lognormal bivariate distribution model, whose probability density
function f takes on the following form, was used by Creaco et al.
(2015a) to generate demand pulses:
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where y1 is equal to ln(T), y2 is equal to ln(I), mi (i ¼ 1,2) is equal to
the mean of yi and S is the covariance matrix, which takes on the
following expression:

S ¼
 

s21 _rs1s2
_rs1s2 s22

!
(3)

where si and _r indicate the standard deviation of variable yi (i¼ 1,2)
and the Pearson correlation between y1 and y2 respectively.

Once generated, the pulses can be composed to obtain the water
demand time series of the individual user, as is shown in Fig. 1. In
this context, it has to be noted that the constant pulse intensity,
which causes the single synthetic pulse to take on a rectangular
shape (Fig. 1), is an assumption that was considered by various
other authors (Buchberger and Wu, 1995; Buchberger and Wells,
1996; Guercio et al., 2001; Alvisi et al., 2003; Buchberger et al.,
2003; Creaco et al., 2015a, b, 2016) in the scientific literature.
Indeed, it has to be interpreted as the average intensity of a real
pulse, since DeOreo (2011) showed that the pulse intensity of some
real appliances can be quite variable in time.

2.2. Parameterization

A Poissonmodel with correlated pulse durations and intensities,
such as that described in the previous section, features 6 parame-
ters. The first parameter is rate parameter l, related to pulse ar-
rivals. Then, m1 and s1 relate to pulse durations Twhereas m2 and s2
relate to pulse intensities I. Finally, _r is representative of the cor-
relation between T and I. When the pulse generation model is
parameterized in order to reproduce the demand pulses of a
household in a generic month, each of parameters m1, s1, m2, s2 and
_r is assigned a single value, valid for the whole period. Parameter l,
instead, is generally assumed to take on time-varying daily values
(Creaco et al., 2015a). To this end, the day can be conveniently
subdivided into a certain number nslot of time slots (e.g., 12 time
slots according to Alvisi et al., 2003 and Creaco et al., 2015a). Inside
the generic mth slot, the value lm of rate parameter l is considered
constant.

Since data concerning real demand pulses are generally un-
available, themodel parameters can be assessed as a function of the
demand volumes at a given aggregation scale. Though some
analytical methods are present in the scientific literature (e.g.,
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