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a b s t r a c t

Accurate landcover maps are fundamental to understanding socio-economic and environmental patterns
and processes, but existing datasets contain substantial errors. Crowdsourcing map creation may sub-
stantially improve accuracy, particularly for discrete cover types, but the quality and representativeness
of crowdsourced data is hard to verify. We present an open-sourced platform, DIYlandcover, that serves
representative samples of high resolution imagery to an online job market, where workers delineate
individual landcover features of interest. Worker mapping skill is frequently assessed, providing esti-
mates of overall map accuracy and a basis for performance-based payments. A trial of DIYlandcover
showed that novice workers delineated South African cropland with 91% accuracy, exceeding the ac-
curacy of current generation global landcover products, while capturing important geometric data. A
scaling-up assessment suggests the possibility of developing an Africa-wide vector-based dataset of
croplands for $2e3 million within 1.2e3.8 years. DIYlandcover can be readily adapted to map other
discrete cover types.

© 2016 Elsevier Ltd. All rights reserved.

Availability

DIYlandcover's source codewill be made available free of charge
for suitable non-commercial purposes under a GPLv3 license, upon
consultation with the authors. For those interested in commercial
applications, the prospective licensee should contact Princeton
University's Office of Technology Licensing. The details of a specific
application of the software for delineating crop fields in sub-
Saharan Africa can be found at mappingafrica.princeton.edu,
together with associated information about participating in the
project, including digitizing rules and links for accessing the
mapping interface.

1. Introduction

Regional maps of landcover provide critical information on food
security estimates (e.g. Monfreda et al., 2008; Licker et al., 2010; See
et al., 2015; Lobell, 2013), models of landeatmosphere interactions
(e.g. Liang et al., 1994), and calculations of carbon stocks (e.g.
Ruesch and Gibbs, 2008), greenhouse gas emissions (e.g.
Searchinger et al., 2015), and habitat change (e.g. Gibbs et al., 2010).
These maps are particularly important in developing regions, such
as sub-Saharan Africa, where government land use data are often
lacking, error-prone, and inconsistent (Ramankutty et al., 2008; See
et al., 2015). These developing regions are also experiencing rapid
land use changes (Gibbs et al., 2010; Rulli et al., 2013) that pose
pressing development challenges (e.g. how to feed people at sub-
stantially lower environmental cost Searchinger et al., 2015).

Unfortunately, landcover datasets derived from medium to
coarse resolution satellite sensors are particularly inaccurate (Fritz
et al., 2010; Fritz and See, 2008). One major reason for poor accu-
racy is the fact that land use patterns in these regions are domi-
nated by smallholder farming. Smallholder fields are typically
smaller (�2 ha) than the resolution (� 6 ha) of the most commonly
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used satellite imagery (Jain et al., 2013). Furthermore, smallholders
often plant diverse mixtures of crops, which further increases
within-pixel heterogeneity (Jain et al., 2013), and their fields often
contain remnant trees and have irregular boundaries, which makes
them spectrally harder to distinguish from the surrounding vege-
tation (See et al., 2015; Lobell, 2013).

New techniques for merging multiple landcover products are
helping to substantially improve map accuracy (Fritz et al., 2011,
2015). However, these approaches cannot overcome the
mismatch between sensor resolution and smallholder field size.
High resolution satellite imagery (� 5 m) is becoming increasingly
availableeand presumably will become more affordableeso the
resolution problem should be solved in the near future (See et al.,
2015; Lobell, 2013). But high resolution comes at the expense of
higher spectral variability; centimeter-scale data require lower or-
bits, narrower swaths, and greater communication bandwidth,
which combine with clouds to greatly limit the area that can be
imaged under contemporaneous environmental conditions, and
from comparable viewing angles. This means that high resolution
image mosaics covering large areas contain substantial and largely
uncorrectable spectral differences caused by variations in atmo-
spheric conditions, vegetation phenology, and bidirectional reflec-
tance. This variability propagates error in automated classifications
over large regions, which can already be substantial when there is
high within-cover variability (Debats et al., 2015), or high hetero-
geneity among cover types (Gross et al., 2013).

It remains a major challenge to develop algorithms that can
accurately classify landcover in the face of both increased image
variability and substantial spatial heterogeneity. Promising
methods are emerging, which draw on advances in computer vision
and machine learning, such as semantic segmentation (e.g. Schroff
et al., 2008) and Randomized Quasi-Exhaustive feature selection
(Tokarczyk et al., 2015), to find optimal classifiers within complex
urban environments Frhlich et al. (2013) and highly variable
smallholder fields (e.g. Debats et al., 2015). However, these ad-
vances are primarily in pixel-wise classification. Accurate, auto-
mated methods for extracting individual objects within a single
cover type, particularly over wide areas, is arguably even more
difficult. Object delineation is an important goal of landcover
mapping, as cover geometries encode critical social and environ-
mental information (Fritz et al., 2015), and can play an important
role in improving environmental monitoring systems. For example,
in agroecosystems, field boundaries can provide a filter for
extracting “pure”, crop-specific time series of satellite-derived
vegetation indices, which helps to improve the accuracy of
remotely sensed yield estimates (Estes et al., 2013a, b). Some
limited progress has been made with automated approaches, but
these have been demonstrated mainly for small areas where the
cover objects have regular geometries and sharp boundaries (e.g.
commercial agricultural fields Yan and Roy, 2014; Ozdarici-Ok and
Akyurek, 2014; Ozdarici-Ok et al., 2015). Such methods are not yet
proven over large areas with more complex, less distinct cases.

An alternative approach is to employ humans, who are very
adept at recognizing patterns in noisy images (Biederman, 1987).
The superiority of human over machine pattern recognition pro-
vides the motivation for CAPTCHA (Ahn et al., 2003), which secures
websites by requiring human users to recognize fuzzy or irregular
letters and numbers that are too difficult for automated algorithms
to identify. Human-interpreted landcovermaps are thus likely to be
consistently more accurate than automated classifiers. Unfortu-
nately, since humans are much slower at data processing than
computers, human-generated landcover maps covering large areas
will require much more time and expense to create. However, this
problem is being alleviated by the growth of the internet, which
makes it increasingly feasible to turn pattern recognition problems

into many small tasks that are undertaken by a large number of
online workersdthe human equivalent of parallel processing. This
ability to “crowdsource” (Howe, 2006) such work supports projects
ranging from galactic classification (Lintott et al., 2008) to orni-
thological surveys (Sullivan et al., 2009). Crowdsourcing of land-
cover is already being used in the Geo-wiki project, which uses
online volunteers to correct landcover data based on their own
interpretations of high resolution satellite imagery (Fritz et al.,
2009, 2012, 2015). Recently, these data have been used to create
the most accurate (82%) global cropland map (Fritz et al., 2011,
2015).

While the use of crowdsourcing is an extremely promising
development for landcovermapping, and is being increasingly used
for this and other environmental monitoring applications (Jacobson
et al., 2015; Fraternali et al., 2012; Schellekens et al., 2014), many
existing projects (e.g. OpenStreetMap (openstreetmap.org)) are
geared towards users who create content according to their per-
sonal interests, thus the resulting maps are unlikely to be
geographically representative (Fraternali et al., 2012). Furthermore,
verifying the accuracy of crowdsourced data is a challenge
(Allahbakhsh and Benatallah, 2013; Flanagin and Metzger, 2008;
See et al., 2015) that remains largely unaddressed by existing
platforms. In terms of using crowdsourcing to improve landcover
data, prior efforts have focused primarily on validating pixel-based
classifications, and less on delineating individual cover objects,
which is arguably one of the greatest advantages that people have
over machines. Indeed, recognizing and digitizing individual,
discrete cover types such as crop fields is considered fairly
“straightforward” for humans (Yan and Roy, 2014).

In this paper, we describe DIYlandcover (or “Do-it-Yourself”
landcover), a new platform for creating crowdsourced landcover
data that addresses the three aforementioned limitations. DIY-
landcover was designed for mapping discrete, but “noisy”, cover
types, where object extraction is of primary interest. Specifically,
our platform provides online workers with tools to 1) delineate
landcover objects within 2) representatively selected locations,
while the resulting maps are subjected to 3) periodic quality as-
sessments that provide estimates of individual worker and overall
map accuracy. We provide an overview of DIYlandcover's design
and mechanics, and report on the results of a trial mapping crop
fields in South Africa, which suggest that DIYlandcover allows
inexperienced online workers to generate high accuracy (>90%),
geometrically rich, and geographically representative landcover
data at a much faster rate than is usually possible with human-
based mapping.

2. System design

The inspiration for DIYlandcover came from GeoTerraImage, a
company that mapped South Africa's arable cropland by manually
digitizing fields visible in high resolution satellite imagery
(GeoTerraImage, 2008). The resulting map set is 97% accurate in
distinguishing cropped from uncropped areas at a 4 ha resolution
(see detailed accuracy assessment in Appendix S1), and provides
rich detail on field type and geometry. However, making these
maps was an expensive and lengthy process; the estimated labor
cost for digitizing was $5 km�2, and the project took approximately
2.5 years to complete (Ferreira, pers. comm.).

We developed DIYlandcover to help overcome these constraints
of cost and production time, while retaining the advantages of
human image interpretation skill demonstrated by GeoTerraImage.
Our platform connects workers in an online job marketplace to a
map application programming interface (API) that hosts high res-
olution satellite imagery. DIYlandcover currently works with Am-
azon's Mechanical Turk (Services, 2012) and the Google Maps API,
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