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a b s t r a c t

We compared the precision of simple random sampling (SimRS) and seven types of stratified random
sampling (StrRS) schemes in estimating regional mean of water-limited yields for two crops (winter
wheat and silage maize) that were simulated by fourteen crop models. We found that the precision gains
of StrRS varied considerably across stratification methods and crop models. Precision gains for compact
geographical stratification were positive, stable and consistent across crop models. Stratification with soil
water holding capacity had very high precision gains for twelve models, but resulted in negative gains for
two models. Increasing the sample size monotonously decreased the sampling errors for all the sampling
schemes. We conclude that compact geographical stratification can modestly but consistently improve
the precision in estimating regional mean yields. Using the most influential environmental variable for
stratification can notably improve the sampling precision, especially when the sensitivity behavior of a
crop model is known.
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1. Introduction

Dynamic crop models are developed for simulating crop growth
and yield in response to various environmental conditions and
management practices at a field scale (Keating et al., 2003; van
Diepen et al., 1989; Williams et al., 1989). To provide summarized
information (e.g. mean/total crop production inside a political
boundary) for agricultural impact and risk assessment to support
policymaking, cropmodels need to be applied over large areas. Due
to data paucity and computing cost, simulations are typically con-
ducted at a limited number of sample locations across a region,
through which results are up-scaled to regional or larger scales
(Ewert et al., 2011). For example, R€otter et al. (1995) chose 18 sites to
represent a large watershed, the Rhine basin. Trnka et al. (2014)
chose 14 sites to represent Europe to simulate the adverse
weather events for wheat. Asseng et al. (2015) chose 30 sites across
the world to simulate temperature effects on global wheat pro-
duction. The methods used to select simulation locations, called
sampling design, can be used to improve the representativeness of
the simulation results (Role�cek et al., 2007).

Many environmental characteristics show a spatial continuity,
i.e. data at two nearby locations are on average more similar than
data at two widely spaced locations. For this reason, when using
environmental data as input to a crop model, the simulation
results are spatially dependent (Caeiro et al., 2003). Despite this,
classical sampling theory is perfectly valid for such spatially
structured populations (Brus and De Gruijter, 1997; Brus and
DeGruijter, 1993; De Gruijter and Ter Braak, 1990). Model-based
and design-based are two widely used schemes of sampling
(Cassel et al., 1977; Wang et al., 2013). For estimating global and
regional means, design-based strategies can be advantageous
(Brus and De Gruijter, 1993), while simple random sampling
(SimRS) and stratified random sampling (StrRS) are two of the
most important design-based strategies (Hirzel and Guisan,
2002; Ripley, 2005). In SimRS, a given number of sampling
units are selected independently from each other and with equal
inclusion probability (Cochran, 1977). In StrRS, the entire study
area is separated into sub-regions, called strata (or zoning),
frequently according to prior information on the population and
then random sampling is applied to each stratum. These two
design-based schemes have been widely evaluated in monitoring
of natural resources (Brus, 1994; De Gruijter et al., 2006), species
distribution modeling (Stockwell and Peterson, 2002; Wisz et al.,
2008) and demographic health surveys (Kumar, 2007, 2009). In a
vegetation survey, Austin and Heyligers (1989) found that strat-
ifying the population by combined information on climate,
topographic and lithological characteristics could better repre-
sent the environmental variability in the area, especially when
the stratification is coupled with well-tuned sampling rules
based on aspect and topographic position. Wang et al. (2002)
found that zoning of the population based on prior knowledge
of the influential variables could reduce the sample size to ach-
ieve the same efficiency in monitoring the area of cultivated land.
Brus (1994) found that the estimation accuracy can be improved
by stratifying the population based on soil and land use maps
when estimating the spatial means of phosphate sorption char-
acteristics. Wang et al. (2010) found that stratification of popu-
lation in the study area could reduce the variance of estimators in
surveys of non-cultivated land in China.

In these survey and monitoring applications, the prior infor-
mation that is used to stratify the population is normally obtained
from other correlated variables or historical survey data. In crop
modeling, the output population is simulated with the input of
environmental variables and management practices, which can be

used as prior information to create the strata. Many types of strata
or zones including climate zones (R€otter et al., 2012), agro-climatic
zones (R€otter et al., 1995), environmental zones (Metzger et al.,
2005; Olesen et al., 2011), agro-ecological zones (Aggarwal, 1993),
and climate-soil zones (Bryan et al., 2014; Zhao et al., 2015a), have
been used for regional or global crop modelling studies. However,
only very few studies explicitly investigated the precision of these
stratification methods and spatial sampling strategies. Nendel et al.
(2013) showed that one soil profile and weather station were not
sufficient to represent the observed mean grain yields of winter
wheat in Thuringia, a region in Germany covering more than
16 000 km2. By using one soil profile and gridded weather data at
1 km spatial resolution, van Bussel et al. (2016) evaluated the effects
of sample size of StrRS on simulations of winter wheat yields under
two production conditions, i.e. potential andwater-limited in North
Rhine-Westphalia. They recommended that detailed soil properties
should be included in the simulations to further consolidate the
conclusions from their study. To our best knowledge, no study has
compared the efficiency of different stratum types (i.e. variables
used to create the strata) and stratum number for estimating
regional mean of simulated crop yields.

This study aims to compare the precision of SimRS and seven
types of StrRS in estimating regional mean yield for two crops
(winter wheat and silage maize). We investigated how the preci-
sion, indicated by mean squared error (MSE), depends on the
sample sizes, the variables used for stratification, the number of
strata, the crop types and the crop models.

2. Methods

2.1. Sampling precision

Crop yields of a region (A) constitute a continuous surface that
can be infinitely divided. However, due to computing cost and input
data availability, it was not possible even to do the simulations for
each individual field of the entire study area. Instead, we divided
the A into 1 � 1 km grid cells and simulated yield for each cell. The
results were treated as the full population (N ¼ 34,168) and the
average over all cells was treated as the true regional yield Y(A). We
sampled the population with a range of sample sizes and sampling
schemes to giving various estimates bY ðAÞ of Y(A).

Eight design-based sampling schemes were evaluated,
including simple random sampling (SimRS) and seven stratified
random sampling (StrRS) with strata based on different environ-
mental variables. A stratification method with L strata divides the
population of grid cells into L non-overlapping groups. SimRS can
be treated as a one stratum StrRS (L ¼ 1). For any particular strat-
ification method, let Nh denote the number of cells within stratum
h. This is determined by the stratification scheme, and is known.
Suppose from each stratum a simple random sample without
replacement is selected. The sample size within stratum h is noted
nh. The symbols used in this study are shown in Table 1.

The estimated mean using stratified random sampling bY ðAÞwas
calculated as

bY ðAÞ ¼ PL
h¼1Nh

bYh

N
¼

XL
h¼1

wh
bYh (1)

where bYh is average yield in stratum h, estimated using the samples
from that stratum.

The estimator bYh is unbiased, since the mean of all possible
samples equals to the true populationmean of stratum h. Therefore,bY ðAÞ is also an unbiased estimator of the population mean YðAÞ of
the entire region according to Theorem 5.1 in Cochran (1977). To
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