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This article demonstrates the incorporation of stochastic grey-box models for urban runoff forecasting
into a full-scale, system-wide control setup where setpoints are dynamically optimized considering
forecast uncertainty and sensitivity of overflow locations in order to reduce combined sewer overflow
risk. The stochastic control framework and the performance of the runoff forecasting models are tested in
a case study in Copenhagen (76 km? with 6 sub-catchments and 7 control points) using 2-h radar rainfall
forecasts and inlet flows to control points computed from a variety of noisy/oscillating in-sewer mea-
surements. Radar rainfall forecasts as model inputs yield considerably lower runoff forecast skills than
“perfect” gauge-based rainfall observations (ex-post hindcasting). Nevertheless, the stochastic grey-box
models clearly outperform benchmark forecast models based on exponential smoothing. Simulations
demonstrate notable improvements of the control efficiency when considering forecast information and
additionally when considering forecast uncertainty, compared with optimization based on current basin
fillings only.
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applied to operate these infrastructures in an efficient manner (for
example, Mollerup et al., 2013; Nielsen et al., 2010; Pabst et al.,

1. Introduction

This article investigates the application of probabilistic multi-
step runoff forecasts generated by simple, conceptual stochastic
models (in the form of so-called stochastic grey-box models) in
system-wide, forecast-based optimization for real-time control
(RTC) of urban drainage networks. A drainage network is consid-
ered to be controlled in real time if process variables are monitored
in the system and used to operate actuators affecting the flow
process (Schiitze et al., 2004). RTC is an efficient tool for responding
to changing demands that are defined for urban drainage systems
(Rauch et al., 2005; Vanrolleghem et al., 2005) and is increasingly
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2011; Pleau et al., 2005; Puig et al, 2009 and Seggelke et al.,
2013). In particular, RTC can support the operation of combined
sewer systems, which are used in most of the larger European cities
and are constantly challenged by increased impervious area and
changing rainfall patterns (Arnbjerg-Nielsen et al., 2013; Willems
et al., 2012).

Most RTC implementations aim to minimize the volume of
combined sewer overflows (CSO). This is achieved by dynamically
controlling flows in the system to achieve an optimal exploitation
of the available storage volume, especially in cases with an uneven
spatial rainfall distribution over the catchment. RTC is classically
performed using static if-then-else rules (Seggelke et al., 2013; for
example) that are optimized off-line based on heuristics and model
simulations, but mathematical optimization routines are also
applied (Pleau et al., 2005, Puig et al., 2009).

Clearly, information on the future evolution of the urban
drainage system (i.e., the runoff expected in the near future) should
contribute to a more efficient optimization of the controlled
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system. Significant developments have been made in the last
decade in terms of radar-based rainfall forecasting (Kramer et al.,
2005, 2007; Thorndahl et al., 2014; Vieux and Vieux, 2005) and
radar-based urban runoff forecasting (Achleitner et al., 2009; Lowe
et al, 2014a; Schellart et al.,, 2014; Thorndahl and Rasmussen,
2013), paving the way for the application of radar-based online
runoff forecasts in RTC.

However, multiple sources of uncertainty affect the runoff
forecasts generated by models (see the discussions in Deletic et al.
(2012), Schilling and Fuchs (1986) and Sun and Bertrand-Krajewski
(2013)): input uncertainty, model structure uncertainty, parameter
uncertainty and measurement uncertainty (e.g., level and flow).
The examples in Schilling and Fuchs (1986), Schilling (1991) and
Schellart et al. (2011) demonstrate that uncertainty of the
measured and forecasted rainfall input is often the major factor
affecting the online performance of runoff forecast models. Previ-
ous studies have evaluated the accuracy of online runoff forecasts
based on radar rainfall input in an urban setting and found the
forecast performance diminished for lead-times greater than
90 min (Achleitner et al.,, 2009) and between 60 and 120 min
(Thorndahl and Rasmussen, 2013).

Considering the large uncertainties of urban runoff forecasts, it
has been hypothesized that the uncertainties may adversely impact
the efficiency of forecast-based RTC schemes (Breinholt et al., 2008;
Schiitze et al., 2004). As a result, RTC algorithms that account for
these uncertainties in mathematical optimization have recently
emerged. Examples include the tree-based control algorithm,
which was proposed for control of (non-urban) drainage water
systems by Maestre et al. (2013), and the dynamic overflow risk
assessment (DORA; Vezzaro and Grum, 2014) for urban drainage
systems that performs a system-wide optimization based on the
computed risk of overflow.

Accounting for the uncertainty of runoff forecasts in RTC re-
quires that an estimate of this uncertainty is provided as an input to
the control algorithm. The literature on uncertainty quantification
in rainfall runoff modelling is abundant. Informal approaches
(GLUE) are popular in urban hydrology (e.g., Dotto et al., 2012; Freni
et al., 2009; Vezzaro and Mikkelsen, 2012), while more formal
Bayesian approaches without (Del Giudice et al., 2015a; Kavetski
et al, 2006) and with data assimilation routines (Moradkhani
et al., 2012; Vrugt et al., 2013) were developed mostly for natural
catchment hydrology. Model estimation and updating in these
approaches are commonly based on Monte Carlo simulations, and
they can therefore be difficult to apply in an online context (Del
Giudice et al., 2015b).

Recent research in the Storm- and Wastewater Informatics
Project (SWI, 2015) has therefore focused on the application of so-
called stochastic grey-box models for probabilistic online runoff
forecasting over multiple prediction horizons. This type of model
combines a simple and fast stochastic model structure with a data
assimilation routine in the form of an extended Kalman filter,
allowing the user to generate probabilistic forecasts with time-
dynamic uncertainty quantification. The application of such
models in urban hydrology was first tested by Carstensen et al.
(1998) and Bechmann et al. (1999). Breinholt et al. (2011, 2012)
developed rainfall-runoff model structures, and the performance
of these for probabilistic flow predictions was assessed by
Thordarson et al. (2012). Finally, Lowe et al. (2014a) analysed the
influence of different rainfall inputs on runoff forecast perfor-
mance, while different options for parameter estimation were
compared in Lowe et al. (2014b).

The work presented here combines these recent developments:
probabilistic, radar-rainfall based runoff forecasts from stochastic
grey-box models have been combined with a risk-based optimi-
zation algorithm that accounts for time-dynamic forecast

uncertainty (DORA, Vezzaro and Grum, 2014) and integrated into a
full-scale, system-wide RTC setup, providing a proof of concept for
the case of applying stochastic forecasts in RTC. The setup is tested
in a case study with noisy real-world measurements and six sub-
catchments with distinctly different characteristics. The purpose
of this article is to.

o demonstrate this new, stochastic, system-wide real-time con-
trol setup for urban drainage systems,

e evaluate how the consideration of runoff forecast uncertainty
influences the efficiency of the RTC scheme, and

e evaluate what runoff forecast performance and what control
efficiency can be obtained with stochastic grey-box models and
radar rainfall input under realistic conditions in a variety of
catchments.

The new control setup applies stochastic grey-box models for
runoff forecasting. However, other probabilistic forecasting
methods (such as the ones presented by Todini (2008), Van
Steenbergen et al. (2012), Vrugt et al. (2005) or Weerts et al.
(2011)) could easily be implemented. Thus, the proposed frame-
work is generic in this respect.

2. Methods
2.1. Stochastic real-time control setup

2.1.1. General setup

A system-wide control setup was applied. Control points need to
be defined by the users and are typically located at major actuators,
such as the outlet of storage basins or pumping stations. Runoff
forecasts were generated by a separate stochastic model (Section
2.1.2) for the inflow to each control point. Based on the inflow
forecasts and online observations of the current basin fillings, the
DORA algorithm was then used to optimize the outflow from all of
the control points, aiming to minimize the overall overflow risk in
the catchment (Section 2.1.3). A control time step of 2 min was
applied and a maximum forecast horizon of 2 h was considered.
Correspondingly, new runoff forecasts were generated every 2 min
for 2 h into the future with a resolution of 60 time steps (intervals of
2 min).

The online operation of the framework is illustrated in Fig. 1. It
can be split into 5 steps that are executed every 2 min:

1. Data collection — the runoff forecast models apply rainfall
forecasts as an input and flow observations for updating the
model states. In addition, the current basin filling is required as
an input to the control algorithm. Depending on the source,
these data are either downloaded as text files through FTP
connections or directly imported from the SCADA system
through the standard OPC UA (Unified Architecture) protocol
(Mahnke et al., 2009).

2. Pre-processing — flow observations are required to update the
states of the runoff forecast models (Section 2.1.2). However, for
many control points, no direct inflow measurements are avail-
able. Instead, these need to be constructed by “software sensors”
from a combination of indirect measurements (such as level in
and outflow from a storage basin). Catchment specific pre-
processing routines (see Appendix A) are therefore imple-
mented in this module. The software WaterAspects (Grum et al.,
2004) was applied for this step in our work, while future
implementations will apply JEP and R scripts.

3. Runoff forecasting — a separate stochastic grey-box model
(Section 2.1.2) is applied for forecasting the inflow volume to
each control point. The model output is a distribution of
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