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A Bayesian network classifier can be used to estimate the probability of an air pollutant overcoming a
certain threshold. Yet multiple predictions are typically required regarding variables which are sto-
chastically dependent, such as ozone measured in multiple stations or assessed according to by different
indicators. The common practice (independent approach) is to devise an independent classifier for each
class variable being predicted; yet this approach overlooks the dependencies among the class variables.
By appropriately modeling such dependencies one can improve the accuracy of the forecasts. We address
this problem by designing a multi-label classifier, which simultaneously predict multiple air pollution
variables. To this end we design a multi-label classifier based on Bayesian networks and learn its
structure through structural learning. We present experiments in three different case studies regarding
the prediction of PM2.5 and ozone. The multi-label classifier outperforms the independent approach,
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allowing to take better decisions.
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1. Introduction

Statistical air pollution prediction is an important task in envi-
ronmental modeling. The pollutants most commonly studied are
ozone (Schlink et al., 2003) and particulate matter (Perez, 2012);
see the references therein for a wider bibliography.

Throughout the introduction we assume ozone as the pollutant
to be predicted. However our methodology readily applies to any
other pollutant.

The decision maker typically needs to know the probability of
ozone overcoming a threshold deemed relevant for health. Once we
discretize the ozone concentration using this threshold we have a
discrete variable. The task is then to estimate the probability of
ozone exceeding the threshold on the basis of different features,
typically constituted by past values of meteorological variables and
air pollutants. According to the machine learning terminology this
is a classification problem. The variable being predicted is referred
to as the class variable.

Bayesian networks (Koller and Friedman, 2009) are probabilistic
models suitable for classification. They represent the joint distri-
bution of a set of random variables via a directed acyclic graph
(DAG) and its associated conditional probability tables. The DAG
constitutes the structure of the network; each node of the DAG
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represents a random variable. The edges of the DAG encode the
assumptions of conditional independence. A Bayesian network
performs a probabilistic inference when it estimates the posterior
probability of the states of some variable(s) given the observation of
some other variable(s). In classification we make inference about
the class variable given the observation of the features. A state of
the art classifier based on Bayesian networks is the extended tree-
augmented naive classifier (ETAN) (de Campos et al., 2016), which
overcomes the limits of previous algorithms such as naive Bayes
and tree-augmented naive classifier (TAN) (Friedman et al., 1997).

Typically the decision maker requires prediction regarding multiple
variables such as ozone measured in multiple stations, assessed ac-
cording to by different indicators (1-h maximum value and 8-h moving
average) and over different days (typically, today and tomorrow). The
common practice is to devise an independent classifier for each class
variable being predicted; yet this approach overlooks the de-
pendencies existing among the class variables. By appropriately
modeling the dependencies between class variables one can improve
the accuracy of the forecasts; this is the focus of this paper.

Multi-label classification (Read et al., 2011) is the machine
learning area which studies how to jointly predict multiple
dependent class variables (labels). We adopt multi-label classifica-
tion to simultaneously predict multiple air pollution variables. This
is the first application of multi-label classification in environmental
modeling, as far as we know.

Our multi-label classifier generalizes the ideas underlying the
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ETAN classifier to multi-label classification, yielding a model which
makes simultaneous inference about multiple class variables given
the value of the features.

We compare the multi-label classifier against the traditional
approach of devising an independent classifier (ETAN in our case)
for each class variable.

We consider three case studies: (i) prediction of PM; 5 in eight
stations in Shanghai for today and tomorrow (16 class variables);
(ii) prediction of ozone in Berlin for today and tomorrow, consid-
ering the threshold for both 1-h and 8-h concentration (4 class
variables); (iii) prediction of ozone in Burgas (Bulgaria) for today
and tomorrow, considering the threshold for both 1-h and 8-h
concentration (4 class variables).

In each case study the multi-label classifier consistently out-
performs the independent approach; thus it provides better sup-
port for the decision maker.

The application of multi-label classifiers in environmental
modeling is not limited to air pollution. Instead, it is suitable to the
many applications in which it is required to predicting multiple
dependent discrete variables. For instance multi-label classification
could become an important tool for ecological modeling, being able
to simultaneously predict the presence/absence of different species
accounting for pray—predators relations. It could constitute a step
forward compared to the development of single-species model.
Attempts in this direction are discussed by De'Ath (2002);
Chapman and Purse (2011).

2. Bayesian networks classifiers

We denote by C the class variable and by A:=(Aj, ...,Ax) the set of
features, typically constituted by the past observations of meteo-
rological and air pollution variables. For a generic variable A, we
denote as P(a) the probability that A = a.

There are different approaches for classification based on
Bayesian networks.

The Naive Bayes classifier assumes the stochastic independence
of the features given the class, factorization the joint probability as
follows:

k
P(c,a) := P(c) [ [ P(qj[c), (1)

j=1

(a) Naive Bayes.
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(c) FAN: the forest is constituted by the
sub-trees A1 — Ao and A3 < Ajy.

corresponding to the topology of Fig. 1(a). However the posterior
probabilities computed by naive Bayes are biased by such unreal-
istic assumption (Hand and Yu, 2001).

The tree-augmented naive classifier (TAN) (Friedman et al.,
1997) relaxes this assumption, augmenting the naive Bayes struc-
ture with a tree which connects the features. A tree is a graph in
which any two vertices are connected by a unique path. As a result
one feature has only the class as parent, while the remaining k-1
features have two parents: the class and another feature. An
example is shown in Fig. 1(b). The optimal tree is identified by
maximizing a score which evaluates how well the graph fits the
joint probability distribution of the variables. A discussion of the
scores for Bayesian networks is given in (Koller and Friedman,
2009; Chap.18.3). The structural learning algorithm which exactly
identifies the maximum-scoring tree has been devised by Friedman
et al. (1997).

TAN is further improved by the forest-augmented naive classi-
fier (FAN). A FAN augments the naive Bayes with a forest. A forest is
a set of disjoint trees; it is more general than a tree, as it includes
the tree as a special case. Thus the BIC score of FAN is higher or
equal than the BIC score of TAN. An example of FAN is given in
Fig. 1(c). The structural learning algorithm of FAN (Koller and
Friedman, 2009; Chap.18.4.1) is obtained as a slight modification
of the TAN algorithm.

A limit of both TAN and FAN is that they do not perform feature
selection; each feature is forcedly connected to the class without
checkingifitis relevant. The extended tree-augmented naive (ETAN)
(de Campos et al., 2016) overcomes this problem. ETAN allows each
feature to have as parent either (i) the class; (ii) the class and a
feature; (iii) a feature without the class; (iv) no parent, in which case
the feature is recognized as irrelevant. The structural learning al-
gorithm of ETAN (de Campos et al.,, 2016) exactly identifies the
highest-scoring graph which satisfies the previous constraints. This
algorithm is more complex than that of TAN and FAN. The ETAN
includes naive Bayes, TAN and FAN as special cases; thus it achieves a
higher BIC score (equal score in the worst case) than all of them.

3. Multi-label classifier
We devise a multi-label classifier which represents the joint
distribution of all the class variables and the features used to pre-

dict them. We learn from data the structure of the multi-label
classifier, imposing the following constraints: each class can have

(b) TAN: the tree is A1 — Ay — Az <+
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(d) ETAN which recognizes A4 as an ir-
relevant feature. Note also that Ao is not
connected to the class.

Fig. 1. Different Bayesian networks classifiers. The class variables are shown in gray.
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