Environmental Modelling & Software 80 (2016) 265—280

Contents lists available at ScienceDirect r e

Modelling & Software

—

Environmental Modelling & Software

journal homepage: www.elsevier.com/locate/envsoft

A minimally invasive model data passing interface for integrating
legacy environmental system models

@ CrossMark

A.Q. Dozier’, 0. David, M. Arabi, W. Lloyd, Y. Zhang

Colorado State University, Fort Collins, CO, USA

ARTICLE INFO ABSTRACT

Article history: This paper presents the Model Data Passing Interface (MODPI). The approach provides fine-grained,

Received 19 February 2015
Received in revised form

31 December 2015

Accepted 26 February 2016
Available online 22 March 2016

Keywords:

Framework invasiveness

Integrated assessment and modeling
Integrated environmental modeling
Inter-process communication

multidirectional feedbacks between legacy environmental system models through read and write ac-
cess to relevant model data during simulation using a bidirectional, event-based, publish-subscribe
system with a message broker. MODPI only requires commented directives in the original code and an
XML linkage file with an optional custom data conversion module. Automated code generation,
compilation, and execution reduce the programming burden on the modeler. Case study results indicated
that MODPI required less code modifications within each model code base both before and after auto-
mated code generation, outperforming a baseline subroutine approach. Performance overhead for
MODPI was minimal for the use case, offering speedup in some cases through parallel execution. MODPI
is much less invasive than other techniques, potentially encouraging adoption by the modeling com-
munity in addition to maintainability and reusability of integrated model code.

© 2016 Elsevier Ltd. All rights reserved.

Data and Software Availability

Software developed for the purposes of this paper are
open-source and publicly available. The implementation of
MODPI presented in the paper is found at https://bitbucket.
org/adozier/fortmodpi (2.1 MB), and the implementation of
events is found at https:/bitbucket.org/adozier/fortevents
(11 KB). A summary of the packages is found at https:/
www.erams.com/resources/Platform/MaaS/Model_
Integration. This software requires an implementation of
the Message Passing Interface (MPI) or ZeroMQ. Models
(3 MB), performance test results (370 kB), a shell script that
reproduces the results (2 kB) in this paper are found at
https://erams.com/resources/Platform/MaaS/Model_
Integration.

1. Introduction

Model integration frameworks, or environmental modeling
frameworks, allow a plug-and-play methodology in connecting

* Corresponding author.
E-mail address: andre.dozier@rams.colostate.edu (A.Q. Dozier).

http://dx.doi.org/10.1016/j.envsoft.2016.02.031
1364-8152/© 2016 Elsevier Ltd. All rights reserved.

submodels of an environmental system to enhance model repre-
sentation of the overall system. However, framework invasiveness
restricts reuse and maintenance of framework-dependent models
(Donatelli and Rizzoli, 2008; Lloyd et al., 2011). Thus, instead of
using the frameworks, many environmental system model de-
velopers incorporate transplanted, and often outdated, submodels
of other disciplines into their codes (Laniak et al., 2013). Although
modeling frameworks have been used to integrate such models
across disciplines, model developers often maintain the model code
base separate from its support of the framework.

Lloyd et al. (2011) defines framework invasiveness as “the
quantity of dependencies between model code and a modeling
framework”. Modeling frameworks that aim at minimizing
imposed dependencies on a legacy model improve maintainability
and reuse (Lloyd et al., 2011). Historically, modeling frameworks
that attempt to be less invasive have focused on coarse-grained
interaction between “components” or submodels of a larger
model (Donatelli and Rizzoli, 2008; Lloyd et al., 2011). Finer-grained
feedback schemes that exchange data from within a component or
submodel have previously taken more invasive approaches or
require extensive computer programming expertise (Becker and
Schuttrumpf, 2011). We argue that the amount of work required
within a legacy model for integration with another model or sup-
port of a framework interface is another obstacle to framework
adoption. Thus, we define invasiveness here to be the dependencies


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
https://bitbucket.org/adozier/fortmodpi
https://bitbucket.org/adozier/fortmodpi
https://bitbucket.org/adozier/fortevents
https://www.erams.com/resources/Platform/MaaS/Model_Integration
https://www.erams.com/resources/Platform/MaaS/Model_Integration
https://www.erams.com/resources/Platform/MaaS/Model_Integration
https://erams.com/resources/Platform/MaaS/Model_Integration
https://erams.com/resources/Platform/MaaS/Model_Integration
mailto:andre.dozier@rams.colostate.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2016.02.031&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2016.02.031
http://dx.doi.org/10.1016/j.envsoft.2016.02.031
http://dx.doi.org/10.1016/j.envsoft.2016.02.031

266 A.Q. Dozier et al. / Environmental Modelling & Software 80 (2016) 265—280

within each model on either the integration platform or other
models, and the amount of work required within each model for
integration or implementation of a framework interface.

Attempts to incorporate multidirectional feedback between
legacy models include iterative, subroutine, and inter-process
communication approaches that are discussed in detail in the
next section. To remain minimally invasive, inter-process commu-
nication techniques are the most promising approaches as
demonstrated by Becker and Schuttrumpf (2011) in making a
closed-source model compliant with the OpenMI standard (Moore
and Tindall, 2005) within a timestep loop. Inter-process commu-
nication techniques have previously required too much program-
ming knowledge for most modelers. Thus, there still remains a
need for a minimally invasive, fine-grained, generic model inte-
gration interface that does not require such extensive programming
expertise (Laniak et al., 2013).

The goal of developing the Model Data Passing Interface
(MODPI) is to facilitate and abstract the legacy model integration
process to reduce framework invasiveness while minimizing pro-
gramming knowledge requirements. Objectives of this study
include:

1. Develop an abstracted interface for minimally invasive model
integration that simplifies complex interactions between legacy
models and modeling platforms of disparate disciplines,

2. Automate code generation of MODPI-compatible wrappers for
legacy models to support ease-of-use, and

3. Evaluate invasiveness and performance of MODPI as compared
to other approaches.

To accomplish these objectives, a publish-subscribe concept is
combined with inter-process communication to provide external
processes read and write access to any relevant state variable
within a legacy model during its execution. A framework is built
that automates wrapper generation, and a case study serves to
benchmark MODPI against another common approach to the same
problem.

2. Background and related work

Many researchers have previously addressed specific model
integration challenges, and some have even developed generic in-
terfaces for model integration. However, no generic interface exists
for fine-grained, multidirectional feedbacks that preserves the in-
dividuality and maintainability of legacy models. Implementing
interfaces for existing frameworks requires significant work within
the model, and often requires addition of code dependencies on the
framework.

This section identifies previous studies that have integrated
legacy models to support fine-grained, multidirectional feedbacks,
which is the primary functional requirement for the integration
studies we summarize here. Fine-grained feedbacks refer to link-
ages of internal (and relevant) data or calculations between mul-
tiple models that cannot be represented by one model as a whole,
but are required to represent a particular process more accurately.
Multidirectional feedbacks refer to data or calculations within one
model that depend on another model and vice versa. When the
need for such feedbacks between models arises, there are various
implementation considerations such as 1) implicit versus explicit
numerical solution techniques, 2) passing data via subroutines or
put/get calls, 3) hardware mechanism for communication, and 4)
single or multiple executable approaches (Valcke et al., 2012). The
following framework design targets for MODPI are used to quali-
tatively assess the different approaches:

. Minimally invasive

. Minimal interface requirements

. Interoperable across languages and platforms
. Links closed-source models

. Reconciles data structure differences

. Performance overhead is minimal

DU A WN =

Interoperability and data structure reconciliation are functional
requirements for specific model integration tasks, which also may
be true for linking closed-source models and performance over-
head in some cases, but not for a generic model integration
interface.

Framework design targets are prioritized to make the interface
more acceptable to a diverse modeling community that individu-
ally maintains or uses large legacy models. We argue that the first
two targets, invasive changes within a model code base and diffi-
cult or extensive interface requirements, represent the largest
factors that inhibit maintenance and reuse of integrated modeling
systems (Lloyd et al., 2011). The design target for minimal interface
requirements is aimed at reducing the amount of programming
work and knowledge required to be able to implement MODPI for a
model. Since modelers are often limited by an unfamiliarity with
advanced programming techniques to improve interoperability or
link closed-source models, minimizing difficult code changes and
refactoring requirements may provide a path to encourage adop-
tion and reuse of model integration frameworks. Ensuring inter-
operability of languages, platforms, and linkages with closed-
source models would also broaden the applicability of an integra-
tion platform within an increasingly diverse community of mod-
elers (Laniak et al., 2013).

2.1. Implicit versus explicit approaches

Both implicit and explicit solution approaches have advantages
and disadvantages. Although solving equations explicitly may
intuitively seem numerically faster, implicit approaches may utilize
assumptions to solve much more efficiently without sacrificing too
much accuracy (Balaji, 2012). Within hydrology, several approaches
based on successive approximations allow models to be run sepa-
rately, maintaining model individuality in partial fulfillment of
Target 1 (Fredericks et al., 1998; Ibanez et al., 2014). Lagrangian
relaxation techniques are systematic implicit numerical methods
that allow for parallel execution of submodels Dozier (2012).
Because implicit approaches utilize original forms of equations,
model individuality may be more easily attained than explicit ap-
proaches addressing Targets 1, 3, 4 and 5. However, most explicit
solutions can improve geophysical model integration through
guaranteeing numerical solutions for feasible inputs (Dozier, 2012;
Balaji, 2012).

2.2. Subroutines versus producer-consumer approaches

In model integration, data can be passed through subroutine
arguments or through an exchanging mechanism such as a buffer
that handles producers and consumers through put/get calls (i.e.,
publishers and subscribers). These are distinguished from hard-
ware communication mechanisms because both subroutine argu-
ments and buffers could potentially utilize memory, hard disk, or
network communications, although there are typical
implementations.

Implementing a subroutine approach often entails decomposing
submodels into smaller components: initialization, run or update,
and finalization (Argent, 2004). For example, the Basic Model
Interface (BMI) specifies initialize and finalize methods in addition
to an update function that is used to advance a model or component



Download English Version:

https://daneshyari.com/en/article/6962540

Download Persian Version:

https://daneshyari.com/article/6962540

Daneshyari.com


https://daneshyari.com/en/article/6962540
https://daneshyari.com/article/6962540
https://daneshyari.com

