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a b s t r a c t

We address two critical choices in Global Sensitivity Analysis (GSA): the choice of the sample size and of
the threshold for the identification of insensitive input factors. Guidance to assist users with those two
choices is still insufficient. We aim at filling this gap. Firstly, we define criteria to quantify the conver-
gence of sensitivity indices, of ranking and of screening, based on a bootstrap approach. Secondly, we
investigate the screening threshold with a quantitative validation procedure for screening results. We
apply the proposed methodologies to three hydrological models with varying complexity utilizing three
widely-used GSA methods (RSA, Morris, Sobol’). We demonstrate that convergence of screening and
ranking can be reached before sensitivity estimates stabilize. Convergence dynamics appear to be case-
dependent, which suggests that “fit-for-all” rules for sample sizes should not be used. Other modellers
can easily adopt our criteria and procedures for a wide range of GSA methods and cases.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Sensitivity Analysis (SA) aims to characterize the impact that
changes in the model input factors (e.g. parameters, initial states,
input data, time/spatial resolution grid etc.) have on the model
output (e.g. a statistic of the simulated time series, such as the
average simulated streamflow, or an objective function, like the
Root Mean Squared Error). SA is a diagnostic tool that can guide
model calibration and verification, support the prioritization of
efforts for uncertainty reduction, or help with model-based deci-
sion-making (Norton, 2015; Pianosi et al., 2016; Song et al., 2015).
Such purposes are generally implemented as four different objec-
tives of GSA: screening (or Factor Fixing), ranking (or Factor Prior-
itization), Variance Cutting, and Factor Mapping (Saltelli et al.,
2008). Screening refers to the identification of those input factors,
if any, which have no influence on the model output and therefore
can be fixed to any value within their feasible range with negligible
implications on the output. For instance, in Kannan et al. (2007) and
in Vanuytrecht et al. (2014), screening of model parameters is
applied as a preliminary step to inform a subsequent calibration,
which is tailored to the subset of influential parameters. Ranking

describes the ordering of the input factors according to their rela-
tive influence on the model output. It is typically used to enhance
our understanding of the model and to identify dominant controls
of the model's behaviour (e.g. Van Werkhoven et al., 2008), as well
as to prioritize efforts for uncertainty reduction (e.g. Sin et al.,
2011), or to support model development (Hartmann et al., 2013).
The Variance Cutting setting is used for the reduction of the output
variance to a value below a user chosen tolerance. It aims at
obtaining specific sensitivities for the different input factors and is,
for example, applied in reliability and risk assessment (e.g. Saltelli
and Tarantola, 2002). Finally, Factor Mapping aims at identifying
those conditions (e.g. sub-ranges of input factors like parameters or
forcing inputs) that produce critical values of the output. It can be
used to enhance model understanding (e.g. Spear and Hornberger,
1980) or to support robust decision-making (Singh et al., 2014).

Unlike Local Sensitivity Analysis (LSA), where the variability of
the model output is explored around some reference input factor
setting (e.g. Ljung, 1999 for a general link between LSA and model
calibration; Hill and Tiedeman, 2007, for an example application to
groundwater models), Global Sensitivity Analysis (GSA) rather at-
tempts to explore the entire space of the input factors. It therefore
typically requires larger computational resources than LSA.
Generally, the implementation of GSA methods is sampling-based
and the value of the sensitivity indices are approximated using* Corresponding author.
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Monte Carlo (MC) simulations. A critical step of sampling-based
GSA is therefore the choice of the sample size to run the MC
experiment. If the sample is too small to adequately cover the input
space, the analysis may not provide robust results. On the other
hand, for very large sample sizes the computational cost may
become very high while not improving the precision of the results
significantly. In environmental applications, where models are
often complex and simulations expensive, an acceptable trade-off
has to be found between the need to obtain robust results and
the need to limit computational cost.

The total number of model evaluations (N) used in GSA typically
increases with the number of model input factors (M). For some
GSA methods, depending on the methodology used to derive the
estimates of the sensitivity indices,N is expressed as a function ofM
and of a base sample size (n) that must be specified by the user (i.e.
N ¼ f(n,M)). Thus, choosing the value of the total number of model
evaluations (N) comes down to choosing the value of the base
sample size (n). For other methods, no explicit expression relates N
to M and therefore N is directly chosen by the GSA user (N ¼ n).
Suggestions for the choice of n can be found in the literature for
several GSA methods. For instance, Saltelli et al. (2008, Table 6.9)
report typical values of n for the Elementary Effect Test (EET, or
method of Morris (Morris, 1991)), for Regional Sensitivity Analysis
(RSA; Young et al., 1978; Spear and Hornberger, 1980) and for
Variance-Based Sensitivity Analysis (VBSA; Sobol’, 1990; Saltelli,
2002). However, a relatively limited number of studies actually
focus on a rigorous assessment of the convergence of GSA results.
Fig. 1 reports several examples taken from the literature regarding
the relationship between N and M for EET, RSA and VBSA. From
these studies, we make three observations:

1. Previous convergence studies assessed different types of
convergence, namely convergence of the sensitivity indices, of
the screening results (identification of the non-influential input
factors), and of the ranking (ordering of input factors according
to their relative importance). This lack of uniformity in the
definition of ‘convergence’ makes it difficult to consistently
compare the results obtained for models of different complex-
ities when using different GSAmethods. However, a preliminary
conclusion that seems to emerge from these studies is that
different sample sizes are required for different types of
convergence. For instance, in the case of EET, Vanuytrecht et al.
(2014) highlight that while a low sample size (n ¼ 25) can be
suitable for screening, it can be insufficient for factor ranking.
Nossent et al. (2011) find that a base sample size of 12,000 is
needed to ensure the convergence of Variance-Based sensitivity
indices in their specific case study, however, a much smaller
sample size (n < 2000) is sufficient if one is only interested in
ranking the most important input factors.

2. Within a given type of convergence, different values of the base
sample size are found for the same method when applied to
different models. For instance to ensure convergence of the
value of Variance-Based sensitivity indices (Fig. 1 bottom left
panel), Tang et al. (2007) use a base sample size n of 8192 (for a
case study with 18 input factors), while Yang (2011) uses n equal
to 3000 (for a case study with 5 input factors). This suggests that
the base sample size may also be a function of the number of
input factors or of other characteristics of the model or of the
case study. It is also worth noting that these studies show that
convergence is often reached using a base sample size signifi-
cantly larger than the values suggested in Saltelli et al. (2008).

3. Convergence is generally assessed based on a visual analysis of
the stability of the results for increasing sample size. Some au-
thors use the confidence intervals of the sensitivity indices for a
more quantitative assessment of their convergence (e.g.

Campolongo and Saltelli, 1997; Nossent et al., 2011). However,
they do not explicitly define a convergence criterion. Herman
et al. (2013) and Vanrolleghem et al. (2015) both introduce a
quantitative criterion to measure the convergence of the
sensitivity indices values (that will be discussed in Section 2.1),
but they do not consider the convergence of ranking or
screening.

Another issue for GSA is the choice of the screening threshold
i.e. a threshold value for the sensitivity indices below which factors
are classified as insensitive (more details in Section 2.1). In this
respect, the following can be learned from existing studies:

1. For Variance-Based SA, the input factors that have a sensitivity
index below 0.01 are often considered non-influential (Tang
et al., 2007; Sin et al., 2011; Cosenza et al., 2013;
Vanrolleghem et al., 2015). The adequacy of this screening
threshold is tested in Tang et al. (2007), however the validation
strategy used in that work (based on a visual approach intro-
duced by Andres (1997)) has some limitations that we discuss
and overcome here (more details in Section 2.2). Nossent et al.
(2011) consider a screening threshold value of zero. They iden-
tify as statistically significant any input factor for which the
lower bound of the confidence interval on the sensitivity index
is positive. This method is quite conservative since, in our
experience, a sensitivity index could have positive confidence
bounds, and therefore a non-zero value, even if the input factor
has negligible effect on the output.

2. EET, which is widely used for screening purpose, provides a
relative measure of sensitivity that has a different meaning and
range of variation depending on the model output definition in
the particular case under study. Therefore, case-specific
threshold values are usually taken (Vanuytrecht et al., 2014)
and little guidance exists in the literature on this topic. Cosenza
et al. (2013) and Vanrolleghem et al. (2015) present an attempt
at defining an absolute value for the screening threshold for EET.
However, they do not validate the adequacy of their proposed
threshold values.

Based on this literature review, we believe that there is a lack of
guidance to support GSA users in the choice of an adequate sample
size and in the definition of a screening threshold, while there is an
opportunity for improving current approaches to the validation of
GSA results. Thus, the objectives of the present study are:

1. To define quantitative criteria to assess different types of
convergence of GSA results, i.e. convergence of sensitivity
indices, ranking and screening.

2. Based on these quantitative convergence measures, to investi-
gate the convergence of three widely used GSA methods and to
assess whether it is possible to give general guidelines for an
adequate choice of the base sample size.

3. To develop a methodology to quantitatively validate screening
results and therefore to formally investigate the adequacy of
different choices for the screening threshold.

Here, we consider three widely used GSA methods, the
Elementary Effect Test (EET), Regional Sensitivity Analysis (RSA)
and Variance-Based Sensitivity Analysis (VBSA), implemented in
the Sensitivity Analysis For Everybody (SAFE) toolbox (Pianosi et al.,
2015). We apply GSA to three hydrological models of increasing
complexity (HyMod, HBV and SWAT). The input factors are the
model parameters and the output is the model accuracy. However,
our approach could equally be applied to other GSA methods or
models, and with different experimental set-ups, i.e. different

F. Sarrazin et al. / Environmental Modelling & Software 79 (2016) 135e152136



Download	English	Version:

https://daneshyari.com/en/article/6962559

Download	Persian	Version:

https://daneshyari.com/article/6962559

Daneshyari.com

https://daneshyari.com/en/article/6962559
https://daneshyari.com/article/6962559
https://daneshyari.com/

