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a b s t r a c t

This research proposes A THEORETICAL FRAMEWORK based on model predictive control (MPC) for
irrigation control to minimize both root zone soil moisture deficit (RZSMD) and irrigation amount under
a limited water supply. We (i) investigate means to incorporate direct measurements to MPC (ii)
introduce two Robust MPC techniques e Certainty Equivalence control (CE) and Disturbance Affine
Feedback Control (DA) e to mitigate the uncertainty of weather forecasts, and (iii) provide conditions to
obtain two important theoretical aspects of MPC e feasibility and stability e in the context of irrigation
control. Our results show that system identification enables automation while incorporating direct
measurements. Both DA and CE minimize RZSMD and irrigation amount under uncertain weather
forecasts and always maintain soil moisture above wilting point subject to water availability. The
theoretical results are compared against the model AQUACROP, weather data and forecasts from Shep-
parton, Australia. We also discuss the performance of Robust MPC under different water availability, soil,
crop conditions. In general, MPC shows to be a promising tool for irrigation control.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

From the perspective of a typical farmer, an ideal irrigation
control system is one that looks ahead at the water availability and
weather forecasts, and adjusts the present irrigation amount to
reduce the irrigation demand. As root zone soil moisture level is
strongly coupled with irrigation demand, this aim can be inter-
preted as maintaining a reference soil moisture level through the
use of irrigation.

The term root zone soil moisture deficit (RZSMD) is defined as
the difference between a given reference level and current root
zone soil moisture level. As such, the ideal irrigation control
method would be one that maintains the RZSMD close to zero,
while minimizing irrigation amount subject to water availability
and weather forecasts. Automation is required to achieve this goal
as manual control is inadequate.

Automated irrigation control has been given considerable
attention during the past decade. State-of-the-art technologies

have been developed and tested (Allam (2002); Hibbs et al., (1992);
Hornbuckle et al., (2009)). Some irrigation control methods depend
on complex physical models, which closely resemble the actual
physical system, based on principles of crop phenology, soil physics
and hydrology (Steduto et al., (2009); Raes et al., (2009); Jones et al.,
(2003); Rossi et al., (2004)). Another important avenue is data
assimilation. Data associated with proxy variables such as sap flow,
stomatal conductance and trunk diameter are used to infer the soil
water requirements (Lu et al., (2004); Kanemasu et al., (1969);
Goldhamer and Fereres, (2003)). Irrigation decisions are based on
these inferences or estimates which are almost always precise.
Nevertheless, the underlying irrigation control logic is limited to
only few categories. One method is to replenish the soil moisture
when RZSMD or water demand exceeds a certain level. They are
called rule-based or ‘ONeOFF’ category. Some methods follow a
predefined irrigation schedule and belong to open-loop control
methods. Former is reactive to current soil moisture conditions
(closed-loop) however in both cases, the control method cannot
utilize future weather information. In contrast, Giusti and Marsili-
Libelli (2015) use weather forecasts and fuzzy rules for irrigation
control, based on approximate fuzzy models of the complex
physical model. Kia et al. (2009); Bahat et al. (2000); Zhang et al.
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(1996) use fuzzy rules on simple evapotranspiration models.
However, considering the objectives and constraints mentioned
previously, defining fuzzy rules is a difficult task which demands
perfect knowledge on the system and most of the time the decision
making becomes ad-hoc. In all the above cases, no attention is given
to optimizing the irrigation amount and in most occasions, the
methods assume an unlimited supply of water to the field.

On the contrary, model predictive control (MPC) based irrigation
control systems are proactive in that they aim to achieve a desired
soil moisture level by adjusting the present irrigation amount.
Examples include Park et al. (2009); McCarthy et al. (2014); Romero
Vicente et al. (2011); Romero et al. (2008) where receding horizon
control based on complex physical models are used to optimize
irrigation. All except McCarthy et al. (2014) used nonlinear opti-
mizationwhich utilized trial and error method. All methods need a
high level of calibration due to use of the complex physical model. If
not properly analyzed, constrained nonlinear optimization can be
infeasible or suboptimal, making the optimization process redun-
dant and irrigation control unreliable. This could be further
complicated by uncertainty in rainfall which none of the methods
have considered and actual weather data are used instead of fore-
casts to test the method.

Some works use dynamic programming to optimize inter-
seasonal and intra-seasonal water allocations subject to seasonal
water limitations (Bras and Cordova (1981); Dudley et al. (1971);
Yaron and Dinar (1982); Rao et al. (1992); Protopapas and
Georgakakos (1990); Sunantara and Ramirez (1997)). Nonetheless,
getting no feedback on crop soil conditions during the calculation
stages, could lead to large propagation errors. Among these, the
work in Bras and Cordova (1981); Protopapas and Georgakakos
(1990); Sunantara and Ramirez (1997) and references therein
consider rainfall forecasts and their uncertainty.However, due to the
incorporation of a closed form expression for the rainfall forecast,
the optimization becomes nonlinear and no guarantee can be given
on the reliability of irrigation control. Uncertainty only in crop
evapotranspiration is considered in Aboitiz and Labadie (1986).

In Saleem et al. (2013), we propose to use MPC, based on a
system model which is a simplified water balance model, that
captures main dynamics of the actual physical system. The irriga-
tion control problem is solved by minimizing both the irrigation
amount and RZSMD. It also considers maximum allowed irrigation
amount and maximum and minimum soil moisture deficits. In the

current paper, we extend our previous work presented in Saleem
et al. (2013) and propose a theoretical framework based on MPC
for irrigation control.

The MPC approach and that in Giusti and Marsili-Libelli (2015)
are equivalent in that both use simplified system models
adequately representative of the actual physical system instead of
complex physical models and both control methodologies are
based on these system models. Using these approximate models
reduce the calibration requirement significantly. However, authors
of Giusti and Marsili-Libelli (2015) do not focus on the control ac-
tion and their approach does not optimize RZSMD. This can be
attributed to the ad-hoc manner of defining the rules. Further, the
method assumes an unlimited amount of water supply to the field.
In other words, the control method in Giusti and Marsili-Libelli
(2015) minimizes the total irrigation amount subject to a given
soil moisture threshold. The MPC method described herein (1)
minimizes RZSMD and daily irrigation amount (and reduces total
amount subsequently) (2) subject to daily irrigation water avail-
ability and RZSMD thresholds.

Saleem et al. (2013) introduced a few assumptions when
developing the MPC approach which are removed in this paper. It
was assumed in Saleem et al. (2013), that the effective values of all
variables in water balance model are known, when in reality they
are not. In this study, we propose to use system identification so
that direct measurements can be incorporated into MPC to
accommodate online calculations.

Second, Saleem et al. (2013) used actual rainfall data as weather
forecasts which removes the uncertainty in weather forecasts. We
now relax this assumption to match the real field application by
designing MPC to accommodate uncertainty in weather forecasts.
In this regard, we consider and compare twoMPC formulations that
are well studied in the area of MPC under uncertainty in distur-
bance also known as ‘robust MPC’ (RMPC): Certainty Equivalence
Control (CE) and Disturbance Affine Feedback Control (DA).

Third, it was assumed in Saleem et al. (2013) that the MPC is
feasible and (possibly) stable at all times. In this paper, we first
explain how these aspects are important in irrigation control then
discuss how they can be guaranteed.

A case study is selected to verify the theory developed in this
research. The weather data required are obtained from The Bureau
of Meteorology (BoM), Australia for Shepparton, Victoria, Australia.
The model AQUACROP (FAO (2011); Steduto et al. (2009); Raes et al.
(2009)) by United Nations Food and Agriculture Organization was
used to simulate the actual physical system.

Section 2 describes the formulation of irrigation control usingMPC.

List of symbols and abbreviations

Abbreviation
MPC model predictive control
RMPC robust model predictive control
CE Certainty Equivalence Control
DA Disturbance Affine Feedback Control
RZSMD root zone soil moisture deficit1

FC field capacity 1

RP refill point 1

WP wilting point 1

ISS input to state stability

Symbol
D current RZSMD

Dþ RZSMD at next time step
E current crop evapotranspiration
P/Pe current rainfall/effective rainfall
I/Ie current irrigation amount/effective irrigation amount
x system state
u control input
w disturbance
N control horizon
H water holding capacity
S,Q,R weights on MPC objectives
〈c〉max upper bound on variable 〈c〉
〈c〉min lower bound on variable 〈c〉
〈ec〉 estimate of variable 〈c〉
ℝ real number set
Xf target set

1 volume/volume% converted to mm.
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