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a b s t r a c t

Gaussian process (GP) emulation is a data-driven method that substitutes a slow simulator with a sto-
chastic approximation. It is then typically orders of magnitude faster than the simulator at the costs of
introducing interpolation errors. Our approach, the mechanism-based GP emulator, uses knowledge of
the simulator mechanisms in addition to the information gained from previous simulator runs, so called
design data. In this study, we investigate how the degree of incorporating mechanisms into the design of
the GP emulator influences emulation accuracy. Similarly to the previous results, we get a significant gain
in accuracy already when using the simplest approximation of the mechanisms by a single linear
reservoir. However, in this case, we again considerably improve emulation accuracy when using the next
two approximations. This allows us to decreases the required number of design data to achieve a similar
accuracy as a non-mechanistic emulator.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The sophistication of urban drainage simulators increases par-
allel to the available computational power. Hydrological simulators
were considered computationally expensive two decades ago
(Stieglitz et al., 1999; Axworthy and Karney, 1999) and they still are
today (Dobler and Pappenberger, 2013). They numerically solve
(usually large) systems of partial differential equations of surface
runoff and water flow in the sewer system. Even though new nu-
merical techniques to handle this task more efficiently emerge
constantly (e.g. Dongarra et al., 2014), these efficiency gains are
compensated by the demand for more accurate and more detailed
hydrological models. Computational speed becomes a limiting
factor should we need to run a hydrological model tens of thou-
sands of times, e.g. for the purpose of its calibration, for sensitivity
analysis, or for uncertainty propagation. We can circumvent this
problem by using a different model, which produces approximately
the same results, but is orders of magnitude faster. Such a model is
called a surrogate model. The use of such a surrogate should always

be followed by runs of the original simulator to validate the cred-
ibility of the results and, potentially, increase their accuracy.

The simplest techniques to build surrogate models is to build a
lower-fidelity model of a high-fidelity simulator, by simplifying the
original model or by reducing the accuracy of its numerical solu-
tion. An example of the application of the former concept is given
by Vanrolleghem et al. (2005), examples of the latter concept are
the multiscale finite volume technique developed by Lunati and
Jenny (2008) or the simulator by Forrester et al. (2006). A
comprehensive overview of model-reducing algorithms used to
achieve better performance is given by Gugercin and Antoulas
(2004).

Another family of surrogate models are data-driven surrogates,
where data in the name refers to pairs of inputs/outputs of the full
simulator, so-called design data. These surrogates are more uni-
versal as they do not need to consider the structure of the model
underlying the simulator. On the other hand, these surrogates
suffer from the curse of dimensionality regarding the number of
simulator parameters (Bellman, 1956; Asher et al., 2015) by
requiring strongly increasing sizes of the set of design data with
increasing dimension of the parameter space. Due to the consid-
eration of the model structure, lower-fidelity models do not need
any design data and are therefore somewhat less sensitive to this
problem.
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Data-driven surrogate modelling encompasses many different,
well-known, methods, such as Kriging (Cressie, 1990), artificial
neural networks (ANN) (Zurada, 1992) or polynomial chaos
expansion (Sudret, 2008). Of these techniques, especially ANN
gained some popularity in urban drainage modelling (Giustolisi
and Laucelli, 2005).

A comprehensive overview of surrogate modelling techniques,
both lower fidelity and data-driven, in hydrology can be found in
Razavi et al. (2012). This overview, however, shows that most ar-
ticles about these methods do not include analytical estimates or
measured results of the dependence of computation time on the
size of the design data set, model complexity, and output
dimension.

A particularly well-known class of data-driven surrogate
models, called Gaussian process (GP) emulators (Kennedy and
O'Hagan, 2001; O'Hagan, 2006), are based on formulating a prior
as a Gaussian stochastic process and then conditioning this process
on the design data to construct the emulator as the posterior. The
emulator is then a statistical approximation of the simulator and
provides uncertainty estimates in addition to the best estimate. To
build surrogate models for dynamic simulators that produce time-
series of results, we need to extend this basic emulation concept.
The naïve technique of adding time as another input is not only
inefficient, but can also lead to computational issues when the time
points are densely spaced. This led to the development of new
methods that were specifically designed to emulate dynamic sim-
ulators (Conti et al., 2009; Higdon et al., 2008; Bayarri et al., 2007;
Bhattacharya, 2007; Castelletti et al., 2012). The idea underlying
one of these approaches (Liu and West, 2009), is to formulate a
linear state-spacemodel and use a Gaussian process as a function of
simulator parameters to represent the noise terms of replications of
this model for design data sets. Conditioning this dynamic sto-
chastic model with all design data sets then leads to the dynamic
emulator.

Reichert et al. (2011) and Albert (2012) proposed to combine the
advantages of low-fidelity surrogate models that use the knowl-
edge of the model structure of the simulator with those of data-
driven approaches in the form of GP emulation. Their concept is
to consider the mechanistic knowledge about the simulator by
formulating a stochastic, linear state-space model as a simplified
version of the simulator, formulate the noise term of replicate
models as a Gaussian Process in the parameters, and condition the
resulting stochastic model to the design data. The idea of
combining the two approaches is similar to the multi-fidelity sur-
rogate modelling approach Leary et al. (2003); Forrester et al.
(2007), but its implementation uses different concepts.

We showed the benefits of considering mechanisms for
increasing emulator accuracy for a didactical example of flow
through a single channel relying on different numerical approxi-
mations of linearized open channel flow equations (Machac et al.,
2015). The goal of this paper is to extend these results to an anal-
ysis of different spatial simplifications of an urban drainage simu-
lation model (the StormWater Management Model, SWMM) of a real
catchment. We focus on emulation of a small number of outputs
with respect to the simulator parameters, such as a joint factor to
the Manning-Strickler coefficients of the sewer pipes, and not on
emulating different input time-series to the modelled system. This
is what typically would be required for calibration or sensitivity
analysis. Results at the full spatial resolution of the network could
then be obtained by running the full simulator with the calibrated
parameters. From the conceptual point of view, emulating input
time-series could be done similarly, however, this may result in
practical difficulties due to the large expansion of the dimension-
ality of the parameter space.We also analyze the dependence of the
gain in simulation time and, in particular, its dependence on the

size of the design data set.

2. Case study and urban drainage simulator

The future application we have in mind, for our emulator, is the
calibration of the parameters of a SWMMmodel to a few measured
time-series. These time-series are comprised of pairs of rainfall
events and measured outflows of a catchment with each of these
time-series being several hours long. To test the adequacy of the
emulator for such a setting, we use a synthetic rainfall that excites
the storage tank and makes the response strongly nonlinear. This
means that the conditioning process of the stochastic, linear model
on which the emulator is based, will be very important to get a
good approximation to of the simulator response by the emulator.
This is important for the test of different emulators based on
different simplifying models. On the other hand, using the syn-
thetic input means that we do not have observed data. In this paper
we will thus focus on quantifying the emulation accuracy as a
function of the size of the design data set and the approximating
linear model on which the emulator is based.

2.1. Adliswil catchment

We focus on a part of the urban drainage system of the city of
Adliswil in the canton of Zurich, Switzerland, spanning an area of
162.8 ha. An overview of the situation is shown in Fig. 1. We
investigate the outflow at a wastewater treatment plant (WWTP),
which then discharges into the river Sihl. Secondarily, we investi-
gate water depth in a particular sewer manhole located approxi-
mately in the middle of the modelled area.

In order to investigate the influence of the topology of the
catchment on the emulator, which is explained in detail later, we
divide the catchment into two parts. The northern part (area of
93.69 ha) has a mainly pervious surface (grass etc.) whereas the
southern part (area of 69.10 ha) is more urban. This results in
different response times for each part. The catchment also contains
two combined sewer overflows and one storage tank (located in the
southern part) with a complicated set of control rules (more than
80).

2.2. SWMM model

Our SWMM model of the Adliswil catchment has 244 sub-
catchments and 460 conduits and was created from GIS data. The
storage tank, which is non-linear due to its shape and control rules,
is also modelled, albeit with a simplified set of rules. We generate
an artificial rain event, as seen in Fig. 2, which is strong enough to
activate these non-linear elements in a short time. A simulation
with this rain event of duration of 100 min with a one-minute time
step takes approximately 3 s1 on a CPU Intel Core i7-2600 CPU @
3.40 GHz.

The model contains thousands of parameters and it is infeasible
to emulate with respect to all of them, as we would need to use a
large design data set, which would in turn result in a slower
emulator (this is explained later). However, a very large amount of
parameters would alsomake calibration of SWMM infeasible due to
parameter identifiability problems (Haag, 2006). Instead, we pick a

1 Although this seems like a short time that does not require an emulator, we
have to keep in mind that it is just a test case on a small catchment spanning a short
time period. Typically in an engineering practice, the simulation spans much longer
periods. The aim of this work is to compare various simplified models and this
comparison requires computationally intense parameter estimations, hence the
short simulation time of 100 min.
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