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a b s t r a c t

Scenario discovery is a novel model-based approach to scenario development in the presence of deep
uncertainty. Scenario discovery frequently relies on the Patient Rule Induction Method (PRIM). PRIM
identifies regions in the model input space that are highly predictive of producing model outcomes that
are of interest. To identify these, PRIM uses a lenient hill climbing optimization procedure. PRIM
struggles when confronted with cases where the uncertain factors are a mix of data types, and can be
used only for binary classifications. We compare two more lenient objective functions which both
address the first problem, and an alternative objective function using Gini impurity which addresses the
second problem. We assess the efficacy of the modification using previously published cases. Both
modifications are effective. The more lenient objective functions produce better descriptions of the data,
while the Gini impurity objective function allows PRIM to be used when handling multinomial classified
data.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Software

This paper makes use of the Exploratory Modeling Work-

bench, available via https://github.com/quaquel/

EMAworkbench. Section 3.4 relies on extensions to clas-

ses available in the workbench. These extensions are pro-

vided as supplementary material. The detailed code with

rudimentary documentation is provided in the form of 3 pdf

representations of the underlying IPython notebooks.

1. Introduction

Scenario discovery is a relatively novel approach aimed at
addressing the challenges of characterizing and communicating
deep uncertainty associated with simulation models (Dalal et al.,
2013). The basic idea is that the consequences of the various deep
uncertainties encountered in a model-based decision support

exercise are systematically explored through series of computa-
tional experiments (Bankes et al., 2013). These computational ex-
periments are designed to exhaustively sample the space spanned
by the various deeply uncertain factors. The results of the set of
computational experiments are analyzed to identify regions in the
uncertainty space that are of interest (Bryant and Lempert, 2010;
Kwakkel et al., 2013). These identified regions can subsequently
be communicated as scenarios.

A motivation for the use of scenario discovery is that the avail-
able literature on evaluating scenario studies has found that sce-
nario development is difficult if the involved actors have diverging
interests and worldviews (Bryant and Lempert, 2010; van't Klooster
and van Asselt, 2006). Rather than trying to achieve consensus or
facilitate a process of joint sense-making to resolve the differences
between worldviews, scenario discovery aims at making trans-
parent which uncertain factors actually make a difference for the
decision problem at hand. Another shortcoming identified in the
evaluative literature is that scenario development processes have a
tendency to overlook surprising developments and discontinuities
(Derbyshire and Wright, 2014; van Notten et al., 2005). This might
be at least partly due to the fact that many scenario approaches
move from a large set of relevant uncertain factors to a smaller set
of drivers or “megatrends”. In this dimensionality reduction,
interesting plausible combinations of uncertain developments are
lost. In contrast, scenario discovery first systematically explores the
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consequences of all the relevant factors, and only then performs a
dimensionality reduction in light of the resulting outcomes e thus
potentially identifying surprising results that would have been
missed with traditional scenario logic approaches.

Although scenario discovery can be applied on its own (Gerst
et al., 2013; Kwakkel et al., 2013; Rozenberg et al., 2013), it is also
a key step in Robust Decision Making (RDM) (Dalal et al., 2013;
Hamarat et al., 2013; Lempert and Collins, 2007; Lempert et al.,
2006). RDM aims at supporting the design of robust policies. That
is, policies that perform satisfactorily across a very large ensemble
of future worlds. In this context, scenario discovery is used to
identify the combination of uncertainties under which a candidate
policy performs poorly, allowing for the iterative improvement of
this policy. This particular use case of scenario discovery suggests
that it could be used also in other planning approaches that design
plans based on an analysis of the conditions under which a plan
fails to meet its goals (Walker et al., 2013).

Currently, the main statistical rule induction algorithm that is
used for scenario discovery is the Patient Rule Induction Method
(PRIM) (Friedman and Fisher, 1999), although other algorithms
such as Classification and Regression Trees (CART) (Breiman et al.,
1984) are sometimes used (Gerst et al., 2013; Lempert et al.,
2008). PRIM aims at finding combinations of values for the uncer-
tain input variables that result in similar characteristic values for
the outcome variables. Specifically, PRIM seeks a set of subspaces of
the uncertainty space within which the value of a single output
variable is considerably different from its average value over the
entire domain. PRIM describes these subspaces in the form of hyper
rectangular boxes of the uncertainty space. To identify these sub-
spaces, PRIM uses a lenient or patient, as opposed to greedy, hill
climbing optimization procedure. In the context of scenario dis-
covery, the outcome variable is typically a binary variable denoting
whether a given set of inputs is of interest or not. The hyper rect-
angular boxes identified by PRIM are not always the best descrip-
tion of the combination of input variables that produces similar
characteristic values for the outcome variables. Sometimes, these
characteristic values are grouped along another axes than the set of
uncertain input variables. Preprocessing the data using principal
components analysis can help to identify such axes and rotate the
data (Dalal et al., 2013). The most frequently employed imple-
mentation of PRIM that is being used for scenario discovery is the
one provided by Bryant in the scenario discovery toolkit, written in
R (Bryant, 2014). A Python implementation of PRIM, including
support for the PCA preprocessing, is available as part of the
Exploratory Modeling Workbench (Kwakkel and Pruyt, 2015).

There are two problems related to PRIM that are addressed in
this paper. First, although originally presented as a regression based
rule induction algorithm, in the context of scenario discovery PRIM
is typically used on a binary classification of the data. In contrast to
e.g. CART, PRIM cannot be used directly for handling the situation
where the output data is classified using more than two classes
(Gerst et al., 2013; Rozenberg et al., 2013). Second, when the un-
certain factors are represented by integers or categories, the lenient
hill climbing optimization procedure used in PRIM needs to account
for this. Friedman and Fisher (1999) offer several suggestions for
adapting the objective function used by PRIM to account for this.
Both the scenario toolkit, and the Python implementation include
these modified objective functions. However, to date the efficacy of
these alternative objective functions has not been systematically
evaluated in the context of scenario discovery. We address both
problems in this paper because their solutions are both closely
related with the lenient hill climbing optimization approach used
in PRIM.

To address these two problems, we first outline in Section 2 in
more detail the PRIM algorithm. We will discuss the suggestions of

Friedman and Fisher (1999) for handling integer and categorical
data in evaluating the next possible steps of the algorithm. To
address the problem of multinomial classified data, we draw on the
way in which CART handles this and show how by adapting the
objective function used by PRIM, it can be made applicable also to
problems where the data is classified using multinomial classifi-
cation. The resulting modifications to PRIM do not affect the effi-
cacy of preprocessing steps such as employed in PCA-PRIM (Dalal
et al., 2013). We provide an open source implementation in Py-
thon for this modified version of PRIM.

In Section 3, we assess the efficacy of alternative ways of ac-
counting for categorical and discrete data in the objective function
used by PRIM. In particular, we apply it to the same data as used in
the original paper of Bryant and Lempert (2010), the case study of
Rozenberg et al. (2013), and the case used by Hamarat et al. (2014).
The first case covers continuous uncertain factors, the second case
covers discrete uncertain factors, and the third case has continuous,
discrete, and categorical uncertain factors. In Section 4, we explore
the objective function for handling multinomial classified data and
compare it to both CART and a sequential PRIM approach. For this
we use the case study of Rozenberg et al. (2013). A discussion of the
results is presented in Section 5 and the conclusions are presented
in Section 6.

2. Method

2.1. PRIM

Fig. 1 offers a visual explanation of the PRIM algorithm. In the
top left corner we see the dataset. The dataset consists of 110
computational experiments, 30 of which are of interest. Each
experiment is described by two variables. The first variable, U1, is a
categorical variable and the possible values are {a,b,c}. The second
variable, U2, is a continuous variable ranging between 0 and 2.
Together, U1 and U2 span the uncertainty space. We use PRIM to
find an orthogonal subspace, or box, within the uncertainty space
that has a high concentration of experiments of interest.

PRIM starts with an initial box B1 that covers all of the data.
Next, the size of this box is recursively reduced. Reducing the size of
the box is done by removing a small slice of data along one of the
dimensions. To find the best slice of data to remove, the algorithm
first enumerates all possible slices, bj, that can be removed, and
next uses an objective function to determine the best possible slice
to remove. This results in a new box Bl. The series of boxes resulting
from this recursive peeling is also known as the peeling trajectory.

How does PRIM enumerate all the possible slices of data that can
be removed? PRIM will only remove data along a single dimension.
So, for each dimension, PRIM enumerates all the possibilities. The
exact possibilities depend on the data type of the dimension. In the
example given in Fig. 1, we have two different data types. U1 is a
categorical variable. In this case, PRIM will consider the removal of
each of the individual categories.1 In our example, this means that
there are three alternative slices of data that PRIM considers for
removal for this dimension. U2 is a continuous variable. In this case,
PRIM will consider the removal of a small slice from the top and a
small slice from the bottom. Continuous variables will thus
contribute two alternative slices of data that PRIM will consider for
removal. The same is true for integer data.

1 The Python implementation of PRIM, available as part of the EMA workbench,
follows the outlined approach for the generation of candidate boxes. Categorical
variables are not presently supported by the R implementation in the Scenario
discovery toolkit. For more details on the consequences of this, see the
supplementary material.
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