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a b s t r a c t

We study the role of uncertainty about the two main baseline drivers of the economy, namely population
and GDP, for the determination of the optimal climate policy and the evaluation of policy costs. Firstly,
we estimate the cost of baseline uncertainty from a decision maker's perspective using different metrics.
Secondly, we discuss how measures of the costs of climate change induced impacts and climate policy
costs can be compared under different and uncertain baseline assumptions. Given that policy costs and
other measures such as impacts are typically expressed relative to GDP in a baseline, comparing those
values with different baseline projections is not trivial. Finally, we compute the cost from baseline un-
certainty which leads to a moderate increase of the welfare losses from climate change.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The role of uncertainty in the field of climate change has been
widely studied in recent years. A focus of research has been the role
of scientific uncertainty in the climate system, in particular the
uncertainty about the climate sensitivity parameter (Rogelj et al.,
2012; Urban et al., 2014). Secondly, the significant uncertainty
around the estimates of economic impacts from climate change has
been focused on, which has been prominently featured also in the
latest IPCC report (Arent et al., 2014). Another field where uncer-
tainty has entered the climate change debate has been the role of
tipping points and the possibility of climate catastrophes being
triggered by crossing a threshold in the climate systems
(Weitzman, 2009; Lontzek et al., 2015). In all these cases, the source
of uncertainty lies in the climate system or the biophysical impacts
and their socio-economic evaluation (Dietz, 2012). The implication
for decision-making in such circumstances has often been a more
precautionary approach for optimal climate policy in such situa-
tions (Millner et al., 2013; Kunreuther et al., 2013; Drouet et al,
2015). Alternatively to the optimal policy, quantitative methods

can be used to explore a large space of futures and select the ‘‘best’’
policy according to specific criteria (Chapman, 1984; Lempert et al.,
2003).

In applied policy analysis, integrated assessment models (IAMs)
compute estimates of the costs and benefits of climate change
policies, and have been improved in the recent years to include
these uncertainties (Crost and Traeger, 2014; Arrow et al., 2013). In
addition to the calibration of the climate system representation and
the climate impact functions, the IAMs also require the specifica-
tion of a baseline scenario of population and GDP or productivity
growth. A recent study demonstrates that the parametric uncer-
tainty in these models is very important (Gillingham et al., 2015).
The choice of this baseline scenario is then crucial as it is used as a
reference point to derive the optimal abatement of emissions, the
mitigation costs and the impacts from climate change. In practice,
during model intercomparison exercises for IAMs, the models
choose to harmonize their baseline in order to eliminate the socio-
economic uncertainty (Edenhofer et al., 2010) or use the models'
default baseline (Kriegler et al., 2014a). To the knowledge of the
authors, this study is the first one discussing optimal climate policy
and policy cost measures under uncertainty about the socio-
economic baseline.

In this paper, we study the role of uncertainty about the baseline
in the assessment of the costs associated with a climate policy. That
is, we don't consider other important sources of uncertainty such as
technological uncertainties, resource availability or fuel price
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uncertainties, or uncertainties in the climate system, but exclu-
sively consider the role of socio-economic baseline uncertainty. We
refer to the population and economic growth scenario as a ‘‘base-
line’’ against which a policy scenario is evaluated. Two research
questions are at the core of our analysis. First, we ask how the
optimal climate policy is affected in the presence of socio-economic
uncertainty. Notably, we estimate the cost of socio-economic un-
certainty and we compare different decision rules. Second, we
discuss how climate change damage costs as well as mitigation
policy costs can be measured and compared when the decision
maker faces uncertainty about the baseline. Comparing these
values across different baseline projections is not trivial, as the
costs are typically expressed in relative terms to GDP or con-
sumption of the baseline. We compare different metrics and show
how they allow comparisons for different baseline assumptions.

This paper is organised as follows: Section 2 describes the
baseline scenarios we use and howweuse them to create our socio-
economic uncertainty range. Section 3 presents the decision model
we use to derive the optimal climate policy for each scenario. Then
we present the decision rules: firstly for a known scenario, and then
under socio-economic uncertainty, extending existing approaches
to take into account uncertain GDP and population projections in
Sections 4 and 5. In Section 6 we describe how to define compute,
and compare policy costs across different baselines. Section 7
concludes.

2. Socio-economic uncertainty

In order to implement the concept of socio-economic uncer-
tainty, wemake use of a set of socio-economic projections that have
been recently developed combining the latest available knowledge
on demography and economic modelling of long-run dynamics,
known as the Shared Socio-economic Pathways (SSPs) (Kriegler
et al., 2012; Moss et al., 2010; O'Neill et al., 2015). The SSP sce-
narios are narratives describing five rather different ‘‘futures’’ in
terms of global and regional developments of technological prog-
ress, markets, convergence, and population dynamics. The SSPs
provide consistent future scenarios including variants of low eco-
nomic and population growth, different income inequality dy-
namics, and high growth and divergence in terms of population and
economic growth. Rozenberg et al. (2013) performed a scenario
elicitation using many drivers to span the socio-economic futures
space. In this study, we rather use two main socio-economic
drivers, the population and the GDP and we use the projections,
associated with the narratives, as they have been implemented and
quantified by the International Institute of Applied Systems Anal-
ysis (IIASA) (Kc and Lutz, 2014) for population and by the OECD for
GDP (Crespo Cuaresma, 2015; Dellink et al., 2015).

The scenarios for the SSPs are labelled SSP1 to SSP5. They
include a ‘‘Sustainability’’ scenario (SSP1), a scenario characterized
by sustained inequality (SSP4), one based on fossil-fuels develop-
ment (SSP5), and a scenario of regional rivalry (SSP3). The scenario
SSP2 is considered to be a ‘‘middle of the road’’ scenario where the
future follows relatively closely historical trends in social, eco-
nomic, and technological developments (O'Neill et al., 2015). While
regional development patterns vary significantly across the five
SSPs, we focus on the global picture, as our interest is more
conceptually motivated and we are more interested in the globally
optimal climate policy. The wide range of the socio-economic de-
velopments does however require the creation of a ‘‘continuum’’ of
future scenarios, which we will use for the uncertainty analysis in
this paper. Here, we construct regional population and GDP time
series through a convex combination of the four SSPs, excluding the
‘‘middle of the road’’ scenario SSP2. We perform a Bayesian boot-
strap of the four SSPs: we draw random samples from a Dirichlet

distribution of order 4 to derive four weights (a1, a3, a4, a5) asso-
ciated to the four SSPs requiring that their sum is 1
(a1þ a3þ a4þ a5¼1). In total, we obtain 50 trajectories of GDP and
population, which we denote by the pair {Y,L}.

These paths describe the evolution of GDP and population over
the 21st century (2005e2100) at the country level (see Fig. 1 for the
globally aggregated values). The total variation spans a significant
range both in terms of global population (between 7 and 15 billion
people in 2100) and per-capita GDP (between 120000 and 900000
$2005 in 2100). By construction, all trajectories lie between the
lowest (SSP3 for GDP and SSP1 for population) and the highest
(SSP5 for GDP and SSP3 for population) projections. The right part
of Fig. 1 shows the sample together with its mean and the as-
sumptions of the ‘‘middle of the road’’ scenario SSP2. As expected,
both GDP and population projections are very close between the
SSP2 and the mean values of our sampled scenarios.

3. The modelling approach

3.1. Computing the optimal consumption profile using an IAM

Based on the socio-economic baseline in terms of total pro-
ductivity growth (based on the GDP projection) and population, the
streams of per-capita consumption ct,r at time t and region r are
computed using the WITCH model, which is an integrated assess-
ment model (IAM) describing the world economy in thirteen re-
gions1 with a detailed representation of the energy sector (Bosetti
et al., 2006). WITCH is formulated as a non-linear optimisation
problem written in GAMS and solved by the CONOPT solver. The
model is solved by maximising global discounted welfare using
Negishi weights wt,r as defined in (Nordhaus and Yang, 1996). The
time-horizon of the model is 2010e2150.

Population lt,r is an input of the WITCH model whereas GDP is
endogenous in the model. Its main driver however is the assump-
tion about growth of total factor productivity. The model is thus
calibrated to match the projected baseline GDP per-capita growth
rates, so that GDP can be considered as an input to the model, even
though technically it is total factor productivity. We calibrate
WITCH for each member of the baseline sample described in the
previous section.

In this paper, a climate policy is characterised by a carbon
budget expressed in gigatons of CO2 equivalents (GtCO2). The car-
bon budget, defined as the cumulative global greenhouse gases
emissions from 2010 until 2100, is a robust indicator of the ex-
pected global warming (Matthews et al., 2009). By solving the
mathematical optimisation program (1), the IAM computes all
relevant variables, namely investment, investment in energy
technologies and other abatement strategies, along with the con-
sumption for a given carbon budget CB.

max
P
t;r

wt;rlt;r

�
ct;r
�1�h

1� h

1
ð1þ dÞt

s:t:
P
t;r

emit;r
�
ct;r
� � CB

(1)

We use a social welfare function as in the default setting of the
WITCH model with a utility function to be of the isoelastic type
where IES ¼ h�1 denotes the inter-temporal elasticity of substitu-
tion, see equation (1). Moreover we consider the default parameter
values of h ¼ 1.5 and a pure rate of time preference of d ¼ 1%.

In order to compute the effects of different climate policy

1 That is, we aggregate the country-level SSP data to 13 broad world regions.
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