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a b s t r a c t

A Bayesian inference method was employed to quantify uncertainty in an Integrated Multi-Trophic
Aquaculture (IMTA) model. A deterministic model was reformulated as a Bayesian Hierarchical Model
(BHM) with uncertainty in the parameters accounted for using “prior” distributions and unresolved time
varying processes modelled using auto-regressive processes. Observations of kelp grown in 3 seeding
densities around salmon pens were assimilated using a Sequential Monte Carlo method implemented
within the LibBi package. This resulted in a considerable reduction in the variability in model output for
both the observed and unobserved state variables. A reduction in variance between the prior and pos-
terior was observed for a subset of model parameters which varied with seeding density. Kullback
eLiebler (KL) divergence method showed the reduction in variability of the state and parameters was
approximately 90%. A low to medium seeding density results in the most efficient removal of excess
nutrients in this simple system.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The environmental, economic and social implications of
ecosystem disturbances generated by the aquaculture industry
have been widely reported (Buschmann et al., 2009). Integrated
Multi-Trophic Aquaculture (IMTA) (Troell et al., 2009) involves joint
farming of a ‘primary’ species together with other species that take
up ‘waste’ (e.g. nutrients, particulates) produced in the farming
process. This integrated approach provides both a method of
removing problematic waste, as well as offering potential economic
benefits through the cultivation of a new crop. Empirical in-
vestigations to quantify the effectiveness of IMTA are expensive and
the results from small-scale systems do not necessarily extrapolate
to large-scale operations because the removal of nutrients involves
non-linear interactions between many variables. Models can help
our understanding of these interactions whilst avoiding the pro-
hibitive cost of full-scale trial operations. In order to validate model
output some of the modelling investigations of IMTA have incor-
porated results from concurrently run empirical growth

experiments (Broch et al., 2013) or compared results with those
from existing IMTA operations (Ren et al., 2012). Howevermethods,
which improve model parameterisation and constrain model
output to observed values and thereby reduce model uncertainty,
have not yet been included in the modelling process.

Bayesian inference provides a robust statistical method to
combine information from numerical models and observations in
the presence of model error and sparse observations (Wikle et al.,
2013). Deterministic biogeochemical (BGC) models are typically
assessed against empirical data, and many are highly para-
meterised, with a degree of uncertainty surrounding parameter
values due to varying results from field-based studies (Planque
et al., 2014). Furthermore, while the parameters in a determin-
istic model are constants they in fact often represent processes that
in reality vary in time. It follows that useful quantification of model
uncertainty provides an envelope of confidence around the model
solution, and statistical methods have been developed recently that
use observations to objectively reduce model uncertainty (e.g.
Parslow et al., 2013; Dowd et al., 2014). This is critical to models
such as those used for IMTA, where the results can influence de-
cisions such as whether to undertake expensive full-scale farming
operations. Simply perturbing parameters through a range of* Corresponding author.
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possible values may lead to wildly divergent solutions in a non-
linear deterministic model. However, by capitalising on Bayesian
inference methodologies, observations from empirical experiments
can be used to objectively quantify and constrain both model pa-
rameters and solutions (Jones et al., 2010; Parslow et al., 2013).
Recent advances in statistical methodology and computing allow
for the problem to be cast in the Bayesian Hierarchical Modelling
(BHM) framework (Cressie andWikle, 2011), which allows samples
of parameters and state variables to be drawn from the posterior
distribution that is conditioned on the empirical data.

The use of BHMs (Dowd et al., 2014; Parslow et al., 2013; Jones
et al., 2010) is a method currently attracting interest due to its
treatment of model uncertainty by incorporating prior knowledge.
A BHM is constructed from a state space model (SSM) through a
process of reformulating the SSM so that the three main areas of
model uncertainty, i.e. observations, process and parameters can be
treated individually. In this approach the deterministic BGC model
is made stochastic by identifying the time-varying processes in the
model and representing them by a random process rather than a
constant parameter. In their study, Parslow et al. (2013) replaced a
constant parameter representing phytoplankton community
structure in a deterministic NPZD model with an autoregressive
process. This captured the observed natural variability seen in
phytoplankton communities despite the fact that in general the
underlying process for this variation is not well understood.

To account for uncertainty in the remaining parameters, con-
stant values are replaced by probability distributions. Finally a data
model is constructed from field-based observations. The newly
formed process, parameter and data models combine to make the
BHM. Once in this format, Bayesian inference techniques are
employed to exploit the conditional dependencies between the
sub-models to enable a reduction in parameter and process un-
certainty. To solve these complex systems, powerful computational
techniques are required.

This reformulation into statisticalebiophysical models com-
bined with the advancements in distributed node (cluster) archi-
tecture supercomputers, has led to powerful new computational
techniques that solve complex model systems in a meaningful way.
The particle filter Markov Chain Monte-Carlo (pMCMC) (Andrieu
et al., 2010) method uses samples from the posterior to calculate
a joint distribution of parameter and state. Using a pMCMC
approach Parslow et al. (2013) showed learning in parameter space
and also that the state variables can be considerably constrained
when conditioned on observation. In general this approach can be
applied to a range of problems in biogeochemical modelling.

In this study an IMTA approach was employed to examine the
capacity of giant kelp (Macrocystis pyrifera) to take up excess nitrate
released from finfish aquaculture farms. The overall aims of the
work are to:

� Reformulate a macroalgae based IMTA (Hadley et al., 2015)
model into a BHM and use the method of Parslow et al. (2013) to
introduce stochasticity into some of the sub-processes and
represent the other parameters using probability distribution
functions.

� Use a pMCMC (LibBI) (www.libbi.org) approach to solve this
system using observational results taken from a field based
IMTA experiment.

� Analyse the posterior distribution to identify the potential of
this approach to constrain the model output based on a set of
observed data, and to determine the extent to which parameter
learning occurs.

2. Methods

2.1. Governing equations for IMTA model

To simulate the growth of M. pyrifera in a near-field arrange-
ment of IMTAwe use themodel developed by Hadley et al. (2015). It
is assumed that nitrogen (N) is the limiting nutrient, and therefore
all equations have a common currency of N and are locally mass
conserving. The governing equations for the state variables are
presented below, while details of the rate process equations are
given in Appendix A:

dNH4

dt
¼ lR

�
NH4ref �NH4

�
� fðNH4;QÞBþ rLD� rNNH4

dNO3

dt
¼ lR

�
NO3ref � NO3

�
� fðNO3;QÞBþ rNNH4

dNs

dt
¼ fðNXx;QÞB� mgðE;Q ; TÞNs � dMNs

dNf
dt

¼ mgðE;Q ;TÞNs � dMNf

dD
dt

¼ lR

�
Dref � D

�
þ dMNf � rLD

(1)

The model (1) has 5 state variables all of which are in units of
mg N m�3 seawater. Ambient nitrogen taken up by the macroalgae
is in two forms of dissolved inorganic nitrogen (DIN), namely
ammonium (NH4) and nitrate (NO3). Parameters NH4ref, NO3ref and
Dref represent the background concentrations of ammonium, ni-
trate and detritus respectively. The refresh rate lR determines how
quickly the external ammonia, nitrate and detritus return to a
background concentration in the absence of macroalgae. This term
is used in the absence of an advection diffusionmodel (Dowd,1997;
Aldridge and Trimmer, 2009). Once taken up, DIN is stored as
intracellular nitrogen (Ns), which is then fixed into the macroalgae
cellular structure (Nf). The uptake rate f(NXx, Q) is dependent on
both ambient concentrations of DIN and the internal quota, Q, of
intracellular nitrogen (Solidoro et al., 1997). The instantaneous
growth rate mg (E, Q, T) is a product of maximum growth rate, m, and
the environmental variables PAR (E), temperature (T) and Q. Nf is
returned to detritus (D) at a rate determined by the mortality term
dM. Similarly decaying macroalgae returns Ns to NH4 at the same
rate. D is remineralised at a constant rate rL. Finally NH4 is nitrified
to NO3 at a constant rate. rN.

The height of M. pyrifera hMA varies according to the allometric
relationship (Hadley et al., 2015),

hMA ¼
�
0:00174Nf

.
nfronds

�1:047
(2)

Height change allows kelp to reach the light from depth. Since
hMA is frond height (m), the parameter nfronds is an average of the
number of fronds within the unit volume. Observations taken from
the IMTA experiment used in the data model were of height and
weight. The weight wMA (g�1 dw m�3) is given by

wMA ¼
�

Nf
Qmin

�
�hMA (3)

here Qmin is the minimum amount of structural nitrogen required
for the macroalgae cells (Solidoro et al., 1997), while the remainder
contributes to growth or respiration. Respiration is not modelled
explicitly but is included in the growth term dependent on the
internal quota Q. Two changes were made in the present model
compared to the original. Firstly, the uptake limiting term
minð1;hMA=zÞ (where z is the cultivation depth and hMA the algae
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