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a b s t r a c t

In climate change research ensembles of climate simulations are produced in an attempt to cover the
uncertainty in future projections. Many climate change impact studies face difficulties using the full
number of simulations available, and therefore often only subsets are used. Until now such subsets were
chosen based on their representation of temperature change or by accessibility of the simulations. By
using more specific information about the needs of the impact study as guidance for the clustering of
simulations, the subset fits the purpose of climate change impact research more appropriately. Here, the
sensitivity of such a procedure is explored, particularly with regard to the use of different climate var-
iables, seasons, and regions in Europe. While temperature dominates the clustering, the resulting se-
lection is influenced by all variables, leading to the conclusion that different subsets fit different impact
studies best.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In climate change research one uses simulations of past and
future climate to explore the possible changes in future climate.
Different global climate models (GCMs) have been developed by a
number of research groups. To stimulate development of these
models and reap maximum benefits of these efforts the World
Climate Research Programme (WCRP) has established the frame-
work Coupled Modelling Intercomparison Programme which now
is in its fifth phase, CMIP5 (Taylor et al., 2012). Regional climate
models (RCMs) are then used to downscale the global information
onto regional scales which helps in assessing climate change in-
formation on the scale relevant to the impact of a changing climate.
The modelling and downscaling is coordinated in frameworks such
as ENSEMBLES (van der Linden and Mitchell, 2009) and CORDEX
(Giorgi et al., 2009; Jones et al., 2011) which produce ensembles of
GCM and RCM combinations. The motivation behind the use of
multiple models in climate change research is to cover different
sources of uncertainties, for more details see e.g. Hawkins and
Sutton (2009, 2012), and Deser et al. (2012). Due to limited
computing resources those matrices with GCM-RCM combinations

are not complete, thus only part of the known uncertainty is
covered.

To further explore howa changing climate is affecting us and the
environment, impact models use climate model output data for the
simulation of future climate change impacts, such as crop yields, or
in hydrological models simulating the run-off in local areas. Even
though it is advised to take all available climate model data into
account (e.g. Knutti et al., 2010; Tebaldi and Knutti, 2007; Palmer
et al., 2004), often it is not feasible in research projects. The prob-
lem which projects face is that the ensembles of GCM-RCM simu-
lations are too big to be handled by many impact modellers.

Until now the GCM-RCM ensembles have often been reduced by
hand-picking climate simulations depending on the partners
involved in the project. Recently, more thoughtful choices were
backed up by considering the different climate change signals of
temperature, and sometimes of precipitation too (e.g., Fig. 2.1 in
Wilcke et al., 2012; Mendlik et al., 2015; Gobiet et al., 2012). Also
Murdock and Spittlehouse (2011) use the spread in the change of
temperature and precipitation in a study for British Columbia. In
few studies in the field of climate research, e.g. Logan et al. (2011),
cluster analysis has been applied to select a subset from an
ensemble of climate simulations. Only recently Cannon (2015)
presented a sophisticated method applying the Katsavounidis-
Kuo-Zang (Katsavounidis et al., 1994) algorithm on a large
ensemble of global climate simulations.
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By reducing the model ensemble one also reduces the infor-
mation about the uncertainty in the projections and the ensembles.
Note, by reducing the ensemble one does not reduce the uncer-
tainty as such, only the information available about the uncertainty.
Thus the task is to maintain maximum information within the
limitations dictated by climate impact studies. In projects like CLIP-
C and IMPACT2C (Vautard et al., 2014) a clear demand is expressed
for a more systematic approach to select subsets of ensembles of
climate simulations tailored to the needs within climate change
impact studies.

In this paper we present a selection procedure founded on the
same basic clustering method as introduced byMendlik and Gobiet
(2015) and explore how it performs for various combinations of
variables and climate indices. Specifically, our approach differs in
the details of selecting how many principal components to retain,
method for choosing the number of clusters and finally how to
select one member from each cluster. Based on experiences from
current projects, we designed an experiment matrix which focus
the evaluation on varying combinations of study regions, climate
variables, climate indices, and seasons to test different impact study
situations. The study regions included here are examples from
Northern Europe. However, the method is to generally select
members out of an ensemble, independent of the region.

The paper is structured as follows. Starting with the data
description in Section 2, which is followed by the explanation of the
ensemble reduction method in Section 3. The experimental set-up
is described in Section 4 and the results presented in Section 5. In
the summary we draw some conclusions in Section 6.

2. Data

2.1. Climate simulations

The ensemble of climate simulations used in this study consists
of 11 GCM-RCM combinations from the EURO-CORDEX initiative
(Jacob et al., 2013) with a grid spacing of 0.44 � 0.44� (approx.
50 km � 50 km). The simulations have been produced assuming
concentration pathway RCP8.5 (van Vuuren et al., 2011; Stocker
et al., 2013) and are listed in Table 1. For this study 30 years of
data from historical (1971e2000) simulation runs were used as
reference. The future climate is represented with three 30 year
periods from the scenario simulation runs: 2021e2050,
2051e2080, 2069e2089.

These are the simulations available on the Earth System Grid

Federation data network1 in November 2014. Thus, it is a real world
situation with an imperfect and imbalanced RCM-GCM matrix
resulting in a limited ensemble of opportunity. This fact does not
influence the integrity of this study, moreover it can be taken as
motivation for selecting simulations different from each other.

2.2. Variables and indices

The data used here are daily values of six model outputs over
Northern Europe: 2 m mean temperature (tas), minimum temper-
ature (tasmin), maximum temperature (tasmax), surface precipi-
tation amount (pr), mean relative humidity at 2 m (hurs), and mean
wind speed at 10 m (wss). From these model output variables we
calculated seasonal averages (Table 2) for each grid cell.

Additionally, for each grid-cell we calculate five annual climate
indices that are derived from the climate model output. For tem-
peratures, these are the beetle-degree-days index (BDD) and
exceeding threshold index (ET) which are related to climate impact
research on spruce bark beetles accompanying this study (J€onsson
and B€arring, 2011). The BDD are the degree days marking spruce
bark beetle maturity and ET is a threshold for the beginning of the
second life cycle of those beetles (c.f. J€onsson and B€arring, 2011, for
technical definitions).

The change in cold days can be described, e.g. by the frost days
(FD) indexwhich counts the number of days with tasmin below 0� C
(Frich et al., 2002). From precipitation the wet day frequency (RR1,
days with pr >1 mm/d) was derived, and Beaufort days (FG6Bft) are
the number of days with wind speeds above 6 Bft (10.8 m/s) (see
also ECA&D indices of extremes2).

This study focuses on the future climate, therefore the climate
change signals (ccs) of the model output and indices are calculated
and used as information for the clustering (subsection 2.1).

Covering regional and seasonal differences in climate change
and in model performance, the climate change signals were inte-
grated over 6 sub-regions in Northern Europe (Fig. 1) and four
seasons. Table 2 shows the quantities used here, which gives
n ¼ 174 variables (6 climate variables � 4 seasons � 6 regions þ 5
climate indices � 1 season � 6 regions ¼ 144 þ 30 ¼ 174). This
results in a matrix A spanned by m simulations and n variables

A ¼ �
aij

�
(1)

where a variable aij is defined (Equationfootnote:footnote 2) as the
ccs of a seasonal averaged climate model output or climate index
averaged (fj) over a region (x).

Table 1
GCM-RCM combinations from EURO-CORDEX RCP8.5 on 0.44� grid and their ab-
breviations used in this study. (Kotlarski et al., 2014; CLIVAR Exchanges, 2011).

GCM RCM Abbreviation

CanESM2 SMHI-RCA4 CanESM2-RCA4
CERFACS CNRM CM5 SMHI-RCA4 CERFACS-RCA4
IPSL CM5A MR SMHI-RCA4 IPSL-RCA4
MIROC5 SMHI-RCA4 MIROC5-RCA4
HadGEM2-ES SMHI-RCA4 HadGEM2-RCA4
M-MPI-ESM-LR SMHI-RCA4 MPI-RCA4
NorESM1-M SMHI-RCA4 NorESM1-RCA4
GFDL-GFDL ESM2M SMHI-RCA4 GFDL-RCA4
EC-EARTH SMHI-RCA4 EC-RCA4
EC-EARTH DMI HIRHAM5 EC-HIRHAM5
EC-EARTH KNMI RACMO22E EC-RACMO22E

Table 2
Ingredients for variables aij in this study.

f Seasons Regions

Mean temperature tas winter DJF region 1 R1
Min temperature tasmin spring MAM region 2 R2
Max temperature tasmax summer JJA region 3 R3
Precipitation pr autumn SON region 4 R4
Rel. humidity hurs annual region 5 R5
Wind speed wss region 6 R6
Beetle degree day BDD
Exceeding threshold ET
Frost days FD
Wet day frequency RR1
Beaufort day FG6Bft

1 http://esg-dn1.nsc.liu.se/esgf-web-fe/. 2 http://eca.knmi.nl/indicesextremes/indicesdictionary.php.
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