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a b s t r a c t

Transformations are underway in our ability to collect and interrogate remotely sensed data. Here we
explore the utility of three machine-learning methods for identifying the controls on coastal cliff land-
sliding using a dataset from Auckland, New Zealand. Models were built using all available data with a
resampling approach used to evaluate uncertainties. All methods identify two dominant landslide pre-
dictors (unfailed cliff slope angle and fault proximity). This information could support a range of man-
agement approaches, from the development of ‘rules-of-thumb’ to detailed models that incorporate all
predictor information. In our study all statistical approaches correctly predict a high proportion (>85%) of
cases. Similar ‘success’ has been shown in other studies, but important questions should be asked about
possible error sources, particularly in regard to absence data. In coastal landslide studies sign decay is a
vexing issue, because sites prone to landsliding may also be sites of rapid evidence removal.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical models are widely used for many different purposes in
the earth and environmental sciences. Particularly common are
regression methods, which assume an appropriate structural model
and then focus on parameterising it. In contrast, machine learning
(ML) uses algorithms to learn the relationship between a response
and its predictors, and so avoids starting with an assumed structural
model (Elith et al., 2008). Many ML techniques have now been
developed (Hastie et al., 2009), such as classification and regression
trees (CART), maximum entropy models (MAXENT) and boosted
regression trees (BRT), which have been used to predict the outcomes
of events as diverse as the risk of avian influenza infection (Gilbert
et al., 2014), road culvert passability for migratory fishes
(Januchowski-Hartley et al., 2014), range shifts in coral-reef habitats
under globalwarmingandoceanacidification (Couce et al., 2013), and
species distributions (as reviewed in Elith and Leathwick (2009)). To
date, however, earth scientists have used these tools much less
frequently than in thebiological sciences, for instance, although some
attention has been placed on the identification of landslide suscep-
tible areas on hillslopes (e.g. Convertino et al., 2013; Felicísimo et al.,
2013; Korup and Stolle, 2014). In this study we use three widely
employed ML methods e CART, BRT and MAXENT e to evaluate and

predict spatial patterns of coastal cliff landsliding. We explore
whether these techniques hold promise for coastal management
applications, and we investigate whether the difficult conceptual is-
sues surrounding the nature of absence data (i.e. preservation bias or
sign decay) that have concerned ecologists building species distri-
bution models also apply in an earth sciences context.

Despite being inherently erosive, cliff-top land remains highly
valued for building sites, recreational resources and transportation
corridors (Griggs 2005; Young et al., 2014). As a result, cliff erosion
poses a hazard in many areas through both small-scale rockfalls
and larger landsliding events. This hazard has increased over time
due largely to shifts in socio-economic factors increasing the den-
sity and economic value of cliff-top developments. In the future this
situation is likely to be exacerbated by increases in cliff erosion
rates driven by factors such as global sea level rise (Walkden and
Dickson, 2008; Ashton et al., 2011).

Management of cliff erosion hazards requires useful model-
based forecasts (Walkden and Hall, 2005). Physical process-based
models are desirable because they allow a dynamic view of
erosion under uncertain future conditions (Dhakal and Sidle, 2004;
Vorpahl et al., 2012). However, many challenges exist in process
modelling, including the need to underpin models with a detailed
understanding of the mechanics of cliff failure, and issues associ-
ated with providing model predictions at the temporal and spatial
scales required by managers. Encouraging developments are un-
derway, arising both from field techniques such as repeat laser
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scanning, which reveal dynamics such as progressive-upward
failure propagation (e.g. Rosser et al., 2007, 2013), and many ex-
amples of detailed numerical analyses on the controls on rock slope
failure (e.g. Eberhardt et al., 2004). In this context frequently
adopted frameworks include continuum finite-element and finite-
difference models, which are used for slopes composed of weak
rock masses where failure is controlled by the deformation of the
intact material or a restricted number of discrete discontinuities
(e.g. faults), and discontinuum techniques that are often used
where jointing is the controlling influence on complex rock slope
deformation (Stead et al., 2006). However, these studies are usually
highly local; typically in the order of a single landslide failure.
Managers also require forecasts of failure likelihood over much
larger spatial extents and longer durations. To date, on cliffed coasts
the use of process-based models for management at these
extended space-time domains is limited to cliffed coasts composed
of clay, glacial tills, and terrace deposits, where rapid erosion rates
provide a historical record of shoreline recession that can be used
for model evaluation (e.g. see Dickson et al., 2007). Unfortunately,
historical records are often not available for rock coasts composed
of more consolidated materials (e.g. sandstones), where erosion
may be imperceptibly slow for long periods, interrupted by sudden
landsliding failures that can remove several metres of cliff top in a
single event. As yet process-models representing the many factors
that affect the dynamics and stability of harder-rock cliffs are not
available at the spatio-temporal scales (decades, km's) required for
coastal management (Dickson et al., 2009).

Lee et al. (2001) discuss the periodicity of landsliding on cliffed
coasts where episodic cliff failure events are associated with cliff
response to predisposing factors, such as profile steepening by
wave action, and triggering factors, such as storms and heavy
rainfall. The relationship between these factors is complex: trig-
gering events of the same magnitude may not necessarily lead to
landsliding, because preparatory factors may also be required. Such
process synergies suggest that successive cliff landsliding events
are not independent, because they are influenced by previous
events (in other words there are reciprocal feedbacks between
pattern and process). Hence, in addition to the scale-limitations on
deterministic mechanistic models, traditional statistical models are
also not well suited to coastal cliff landsliding.

Limitations in traditional models for coastal cliff erosion are
slowly being offset by advances in our ability to collect and inter-
rogate remotely sensed data. For instance, Michoud et al. (2014)
describe a boat-based LIDAR survey of a 30 km stretch of cliffed
coast in Normandy, France. Such datasets can be analysed by sta-
tistical (empirical or data-driven) models, offering alternate, yet
complementary, approaches to process-based representations of
erosional processes on cliffs. Several modellingmethodologies have
been explored, including correlative multivariate regression
methods (Marques et al., 2013), probabilistic models for generating
maximum likelihood distributions of cliff failure (e.g. Hall et al.,
2002; Milheiro-Oliveira, 2007), and Bayesian networks to predict
spatial variability in the amount of cliff erosion (Hapke and Plant,
2010). Such data-driven approaches are all influenced by the qual-
ity and availability of historical data, but developing robust de-
scriptions of long-term change on cliffed coasts is challenging due to
the brevity of historical records and monitoring data relative to
erosion rates. However,many disciplines face problems arising from
the scarcity and patchiness of long-term data records and in-
ventories. The need to make inferences and forecasts under such
conditions has resulted in the development of statistical techniques,
many grounded in ML approaches, designed to explore messy, non-
linear and non-additive data (Hastie et al., 2009; James et al., 2013).
Examples of such techniques include CART, MAXENT and BRT, all of
which have been widely used in ecological studies (e.g. Elith et al.,

2006; De'ath, 2007, Bradley, 2010; Perry et al., 2012).
MLmethods can be used both to predict and tomake inferences,

with one potentially informing the other (James et al., 2013). ML-
based techniques have been applied in the earth sciences to iden-
tify the relative importance of the potential predictors of land-
sliding patterns on hillslopes, and thus identify landslide-
susceptible areas (Brenning, 2005; Convertino et al., 2013).
Felicísimo et al. (2013) compared the performance of four methods
(multiple logistic regression, multivariate adaptive regression
splines, CART, and MAXENT; the latter three are ML-based) using a
landslide database from Spain and concluded that all yielded
similarly reliable predictions. However, one issue that has received
little attention is the deceptively difficult question of what an
‘absence’ in a geomorphological dataset really is, and what can be
inferred from it (Korup and Stolle, 2014). The issue of absences
arises wherever detection is not perfect and, as Lahoz-Monfort et al.
(2014) point out, a failure to adequately consider the nature of
absences can result in a model predicting detectability rather than
presence. No level of statistical sophistication can ‘magic away’ the
issues associated with unreliable parameterisation information
(see Lobo, 2008).

We use CART, BRT and MAXENT models to explore spatial pat-
terns in the risk of coastal cliff landslides around Auckland, New
Zealand (NZ). This study represents the first application of these
techniques to coastal cliff landsliding events. Our main objectives
are to: (1) discern the relative importance of the factors that un-
derlie the observed landsliding patterns, and (2) develop statistical
models that can be used to predict the spatial pattern of landslide
activity. Ultimately our analyses allow us to evaluate the utility of
ML-based methods for coastal cliff erosion management, and to
contribute to a broader ongoing discussion of presence-absence
data in empirical modelling.

2. Field setting and landslide database

Our study is underpinned by coastal landslide data from
approximately 40 km of cliffed coastline around Auckland, NZ
(Fig. 1). The area encompassed by the database includes cliffs
composed of weak sedimentary rocks (interbedded sandstones and
mudstones) that have been subject to increasing urban develop-
ment over several decades, driven in part by population growth in
the city that has risen at nearly double the national rate since 1991
(Edbrooke et al., 2003). The cliffs are exposed to limited wave fetch
and long-term cliff erosion rates are relatively slow (<0.1 m.yr�1)
(de Lange and Moon, 2005). However, sudden episodic cliff failures
can remove several metres of cliff top in single events, threatening
coastal properties and people (Jongens et al., 2007).

Data collection was funded by Auckland Council and led by a
coastal geomorphologist (MD) at the University of Auckland in
FebeJuly 2010. Data collection involved desk-top mapping using a
combination of rectified aerial photographs (2006) and LIDAR-
derived contour data (2008) as well as an extensive field map-
ping programme in 2010. The data collection techniques are sum-
marised in Supplementary Data 1. There is no overt geographic
survey bias in the database: mapping was conducted along
approximately 40 km of cliffed coast (Fig. 1) within the metropol-
itan urban limits of the city where the cliffs are composed of
sedimentary rock (i.e. omitting hard volcanic rock cliffs). Small
sections of coast were omitted where it was not possible to access
the cliff toe, and mapping was not conducted on the Manukau
Harbour shoreline or on offshore islands. Notwithstanding these
restrictions the large range of sites sampled represents a broad
environmental coverage with respect to variables analysed.

Initially 64 landslides were located from photographs and
contour data, but this represented a considerable under-sampling
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