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a b s t r a c t

In this paper, a new dynamic model describing the epileptic seizure initiation through transition from
interictal to ictal state in a brain predisposed to epilepsy is suggested. The model follows Freeman’s
approach where the brain is viewed as a network of interconnected oscillators. The proposed nonlinear
model is experimentally motivated and relies on changes in synaptic strength in response to excitatory
spikes. This model exhibits a threshold beyond which a bifurcation toward a short-term plasticity state
occurs leading to seizure onset. A resulting explanatory assumption is that when considering epilepsy,
brain regions are characterized by abnormally low thresholds toward short-term synaptic plasticity. It is
shown by simulation that the proposedmodel enables some experimentally observed qualitative features
to be reproduced. Moreover, a preliminary discussion on the impact of the underlying assumptions on the
fundamental issue of seizure control is proposed through an EEG based feedback control scheme.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Epilepsy is the second most common neurological disorder
after stroke. It affects approximately 50 million people around
the world. Unfortunately, only 60% of cases respond to available
antiepileptic drugs (AEDs). Besides the lack of efficiency of AEDs,
they may induce unacceptable side effects and even lead to
a substantial morbidity level, especially when polypharmacy is
required (Iasemidis, 2003). This situation has triggered increasing
interest in the seizure prediction paradigm (Sackellares, 2008)
since an early anticipation of seizuresmay give us time to intervene
therapeutically in a much less aggressive manner (Sackellares,
2008). The ability to perform early prediction of seizure onset
relies on the assumption that a gradual transition takes place,
steering areas of the brain from one state to another. Moreover,
electroencephalogram (EEG) based prediction needs this gradual
transition to produce some specific signature of the recorded
signals. Although it is now widely accepted that all epileptic
seizures do not fit this optimistic assumption (Sackellares, 2008),
successful signal processing based prediction tools have been
developed.

Besides such data processing based achievements, a deeper
insight into the mechanisms involved can be obtained through
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dynamic phenomenological models. Such models may provide
specific characterization that makes it possible to enlarge the
subset of cases for which prediction is efficient and/or increase the
anticipation time for the already successful situations. Deriving a
simple and functional dynamic model that represents the onset of
epileptic seizures is the aim of the present contribution.

The modeling approach proposed here follows Freeman’s
suggestion (Freeman, Kozma, &Werbos, 2001) according towhich,
the brain can be viewed as a network of nonlinear oscillators
of relatively low dimension (Andrzejak et al., 2001; Babloyantz
& Destexhe, 1986). Using this paradigm, it has been suggested
(da Silva et al., 2003) that these oscillators show two attractors
referred to respectively as normal steady state and paroxysmal
state. The transition from the first to the second attractor
explains the ictogenesis. Based on these ideas, a signal generator
has been developed (da Silva et al., 2003) by identifying the
attractors fromrecordeddata and constructing adhoc blocks (burst
generators, transition firing, etc.) leading to simulated signals that
fit astonishingly well to the true recorded EEG signal. A similar
approach has been adopted in Traub and Bibbig (2000). These
schemes however do not propose any conjecture as to the precise
mechanism that lies behind the bifurcation occurrence.

Starting from this critical point of view and the commonly
admitted idea that seizures reflect an abnormal hyper-synchro-
nization between neuron activities (Iasemidis & Sackellares,
1996; Sackellares, 2008; Schelter et al., 2006; Schindler, Leung,
Elger, & Lehnertz, 2007b), the authors of Chakravarthy, Sabesan,
Iasemidis, and Tsakalis (2009b); Chakravarthy, Tsakalis, Sabesan,
and Iasemidis (2009a) suggest a simple and attractive model for
ictogenesis with implications on seizure control. According to this
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model, epileptic seizures result from badly compensated increases
in the synaptic strengths. More precisely, while such sudden
increases (i.e. enhancing synchrony) are suitably attenuated in a
normal brain, thanks to correctly tuned compensators, they induce
positive feedback (bursting) in brains predisposed to epilepsy that
are characterized by de-tuned compensators.

This interpretation, while quite suitable to explain the experi-
mentally observed bursts (Litt et al., 2001) that occur during the
preictal period remains insufficient to explain the fundamental
difference between transient bursts and the established relatively
long-term seizure. In this paper, a qualitative difference is conjec-
tured that involves the presence of low synaptic threshold for the
development of seizures.

The dynamic model proposed in this paper is based on the
following conjectures:

(1) The brain can be viewed as a network of interconnected
oscillators (Freeman et al., 2001).

(2) Seizure onset reflects an abnormal synchronization level
between neuron activities (Sackellares, 2008).

(3) In the absence of pathologies, there is a balance between
synchronization and desynchronization disorders (Schnitzler
& Gross, 2005).

(4) Synaptic strengths which support oscillator interconnection
show dynamic behavior which differs according to the fre-
quency and amplitude of an excitation signal (Gonzalez-
Burgos, Krimer, Urban, Barrionuevo, & Lewis, 2004; Thomson,
1997; Varela et al., 1997) and may exhibit several attractors
(Buonomano, 2000; Buonomano&Merzenich, 1995;Goldman-
Rakic, 1995; Hempel, Hartman, Wang, Turrigiano, & Nelson,
2000; Matveev & Wang, 2000).

(5) The normal steady state and the short-term plasticity state
may be viewed as two different attractors for the dynamic
synapse strength. Based on experimental observations (Thom-
son, 1997) reporting that ‘‘Once initiated by a brief high fre-
quency spike train, facilitation (strength)wasmaintained at lower
frequencies’’. One may then conjecture that the high frequency
spike train gradually increases the synaptic strength (see point
(4) above) beyond a threshold where a transition is fired to the
short-term plasticity attractor, contrary to the normal state.
Once this occurs, despite the existence of a low frequency spike
train, the strength retains its high value. Again, experimental
evidence suggests that thresholds are involved in the synapse
dynamics (Wasling, Hanse, & Gustafsson, 2002). This conjec-
ture can be viewed as a particular instantiation of the two-
attractors concept described above (da Silva et al., 2003) but
applied to an interconnected network rather than to a single
neuron.

(6) Regions in a brain predisposed to epilepsy are characterized
by abnormally low synaptic thresholds from which transition
to short-term plasticity is fired.

(7) Seizures may be initiated by a spike train as suggested by
Hempel et al. (2000). This signal acts as input to the synap-
tic strength dynamical system (see conjecture 4 above) with
sufficiently high frequency to enhance (in brains predisposed
to epilepsy) an increasing-in-mean sequence in the synaptic
strength causing transient bursts during the preictal phase.
When the synaptic strength is beyond the threshold, transi-
tion occurs and short-term plasticity with high coupling is
achieved. Synchronization is then accelerated giving rise to
seizure onset.

In what follows, simple mathematical models of the above
conjectures are proposed. These models are then assembled in
order to produce a seizure occurrence scenario that qualitatively
reproduces experimentally observed features. For the sake of
simplicity, Rössler-like oscillators are used although specifically

identified oscillators (such those used in da Silva et al. (2003))
would provide better resemblance with experimental EEG signals.
Synchrony indicators have been computed according to the
multichannel approach proposed in Muller, Baier, Galka, Stephani,
and Muhle (2005). These indicators have been used for EEG
recording analysis in Schindler, Elger, and Lehnertz (2007a);
Schindler et al. (2007b).

The paper is organized as follows: First the basic equations
of the oscillator network are given (Section 2). In particular, it
is proposed that the connections between oscillators involve a
scalar representing the synaptic strength. A dynamic model for
this parameter is then given and its experimental foundation
is discussed (Section 3). The measure of synchrony proposed in
Muller et al. (2005) and used in the current paper is recalled in
Section 4. In Section 5, simulations are provided to assess the
ability of the proposedmodel to qualitatively exhibit seizure onset
scenarios. The sensitivity of the scenario features (duration of
the preictal phase, amplitudes of bursts, etc.) are then discussed.
Finally, an EEG based control strategy is proposed that relies
on the underlying conjectures that may help attenuating seizure
amplitudes.

2. Model of an oscillator network

Let us consider a model of a region in the brain constituted of
N identical interconnected subregions of neurons. Subregion i is
represented by a Rössler nonlinear oscillator that is governed by
the following system of ordinary differential equations:

ẋi(t) = −ωyi(t) − zi(t)

+

N−
j=1,j≠i


εji(η) · (xj(t) − xi(t))


+ xd(t − τi) (1)

ẏi(t) = ωxi(t) + αyi(t) (2)

żi(t) = b + zi(t) ·

xi(t) − γ


(3)

where xi is the variable that represents the contribution of
subregion i to the EEG recording, that is:

VEEG =

N−
i=1

λi · xi (4)

while yi and zi represent internal states of the oscillator that are
necessary to produce the oscillations with a suitable degree of
complexity (Andrzejak et al., 2001; Babloyantz & Destexhe, 1986).
The coefficients λi’ reflect the relative positions of subregionsw.r.t.
the recording sensor. The term: εji(η) ·(xj(t)−xi(t)) represents the
coupling effect of subregion j on subregion i. The coupling factor
εji(η) is considered to be of the following form:

εji = εmin
ji + ε0

ji · η (5)

where εmin
ji and ε0

ji are some constant values and the scalar η
denotes the synaptic strength in the region of interest. Under
normal conditions, desynchronization is assumed to be enhanced
through the terms:

xd(t − τi); i ∈ {1, . . . ,N}

which represent the effects on the oscillator i of a dedicated
desynchronization signal xd, delayed by an amount of time τi that
depends on the subregion. For a large number of neurons, the
stochastic distribution of the delays (τi’s) guarantees a high level
of desynchronization between neurons under normal conditions.
In our simulations, a simple sinusoidal desynchronization signal is
used together with equally distributed delays:

xd(t) = Ad sin

2π t
Td


; τi =

2iπ
N

. (6)



Download	English	Version:

https://daneshyari.com/en/article/696273

Download	Persian	Version:

https://daneshyari.com/article/696273

Daneshyari.com

https://daneshyari.com/en/article/696273
https://daneshyari.com/article/696273
https://daneshyari.com/

