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a b s t r a c t

Urban cellular automata (CA) models are broadly used in quantitative analyses and predictions of urban
land-use dynamics. However, most urban CA developed with neighborhood rules consider only a small
neighborhood scope under a specific spatial resolution. Here, we quantify neighborhood effects in a
relatively large cellular space and analyze their role in the performance of an urban land use model. The
extracted neighborhood rules were integrated into a commonly used logistic regression urban CA model
(Logistic-CA), resulting in a large neighborhood urban land use model (Logistic-LNCA). Land-use simu-
lations with both models were evaluated with urban expansion data in Xiamen City, China. Simulations
with the Logistic-LNCA model raised the accuracies of built-up land by 3.0%e3.9% in two simulation
periods compared with the Logistic-CA model with a 3 � 3 kernel. Parameter sensitivity analysis indi-
cated that there was an optimal large window size in cellular space and a corresponding optimal
parameter configuration.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Land-use dynamics constitute an open and complex spatio-
temporal evolution process that involves multi-element composite
effects from natural, social, and economic factors (Arsanjani et al.,
2013; Fuglsang et al., 2013; Hewitt et al., 2014). Environmental
modeling can support scientific decision-making processes, and
thus contribute to sustainable development associated with land-
use changes. Spatial simulations and quantitative analyses of ur-
ban land-use dynamics are effective ways to improve the under-
standing of the evolution of urban landscapes. Cellular automata
(CA) have drawn increasingly more attention in the field of land-
use and land-cover analysis and simulation. The ‘bottomeup’
approach of CA fully reflects the concept that complex global pat-
terns emerge from interactions governed by local rules. In addition,
CA are ideal for simulating and predicting complex geographic
phenomena (Liu et al., 2008a).

Based on the pioneering work by Tobler (1979) and Couclelis
(1988), many researchers have developed urban land-use
CA models over the last three decades, resulting in significant

achievements (Batty and Xie, 1994; Clarke et al., 1997; Li and Yeh,
2000; Liu et al., 2007; Stevens et al., 2007; Takeyama and
Couclelis, 1997; Verburg et al., 2004b; Wu, 2002). These models
generally included a combination of drivers and spatiotemporal
interactions among land uses in neighborhoods.

Identifying transition rules is a key issue in urban CA. Typically, a
variety of biophysical and socioeconomic factors are included in
transition rules as driving forces of urban development. Re-
searchers have proposed various methods to determine the con-
tributions of different spatial variables and to calibrate urban CA
models (Al-Ahmadi et al., 2009; Dai et al., 2005; Feng and Liu, 2013;
Feng et al., 2011; Kocabas and Dragicevic, 2007; Li and Yeh, 2002,
2004; Liao et al., 2014; Liu et al., 2008a; Verstegen et al., 2014;
Wang et al., 2013; Wu, 2002; Wu and Webster, 1998; Yang et al.,
2008). The binary logistic regression method developed by Wu
(2002) has been widely used in urban land-use modeling because
of its strict theoretical basis of statistical learning and empirical
characteristics, and it has become a classic calibration method for
urban CA (Cheng and Masser, 2003; Dendoncker et al., 2007; Hu
and Lo, 2007; Verburg et al., 2004a). More recently, new socio-
economic factors such as per-capita gross domestic product (GDP),
land price, employment potential, and population density have
been incorporated into the driving forces of urban CA models and
integrated with logistic regression and Markov chain analysis to
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predict future scenarios of urban development (Arsanjani et al.,
2013; Guan et al., 2011; Mas et al., 2014). However, these models
mainly considered a 3 � 3 kernel, which is a relatively small
neighborhood, though studies have noted that the logistic regres-
sion urban CA model is sensitive to scale (Pan et al., 2010).

Neighborhood interaction rules are an important subset of
transition rules and play a key role in the calculation of cellular
conversion probabilities. To quantify and analyze the neighborhood
effects generated by surrounding cells at different distances from a
central cell, Verburg et al. (2004b) defined an enrichment factor
formula for measuring the over- and under-representation of spe-
cific land uses in cellular space. More recently, other studies have
achieved better simulation results by applying this enrichment
factor to determine the neighborhood parameters of urban cellular
models or as empirical data for calibrating neighborhood interac-
tion rules (Hansen, 2008; Van Vliet et al., 2013). However, these
models generally considered a small neighborhood scope with a
relatively short distance from the central cell under a specific res-
olution during the application. For example, Van Vliet et al. (2013)
used a neighborhood radius covering 0e4 unit distances (the
discrete ring of a cell with a width of 500 m) to simulate urban
land-use dynamics at a country scale in Germany.

The external effects generated by concentrative and dispersive
forces play an important role in urban dynamics and are seen as the
organizing forces of urban patterns (Harrop, 1973; Krugman, 1999;
Rodrigue, 2004). Hagoort et al. (2008) pointed out that neighbor-
hood interaction rules specify how the combined effects of spatial
externalities work over distance in cellular space. Spatial exter-
nalities are considered to represent the aggregated effects of a
specific land-use type on another in the neighborhood (Hagoort
et al., 2008; Hansen, 2008). Research on neighborhood effects has
shown that a neighborhood scope greater than a relatively small
window size (i.e., a large neighborhood window) still has a signif-
icant influence on the development of the center cell (Hagoort et al.,
2008; White and Engelen, 2003). In fundamental urban CA, the
decay coefficient of a small neighborhood function will eventually
approach zero as the radius of the neighborhood increases (Van
Vliet et al., 2013). Thus a small neighborhood function cannot
effectively express the impact of spatial externalities existing in a
relatively large neighborhood window on the development of the
central cell.

In summary, neighborhood interactions in urban CA models
have mainly been limited to a 3 � 3 kernel or relatively small
moving window, partially due to the aim of simplifying the models
(White and Engelen, 2000). The neighborhood rules established in
this case are unsuitable for detecting complex neighborhood effects
over a larger scope. This problem is not prominent when the spatial
resolution of geospatial data is low. However, high-spatial resolu-
tion remote sensing data have become readily available and
increasingly popular. Thus, interaction rules designed for complex
neighborhood effects in urban CA models are encountering un-
precedented challenges. The goal of this paper is to characterize the
role of complex neighborhood effects over a relatively large scope
associated with urban sprawl simulation and prediction. A
modeling exercisewas designed to answer the following questions:
1) do large neighborhood effects exist on urban sprawl processes?
2) if yes, how can large neighborhood rules in urban CA modeling
be calibrated? and 3) what is the expected increase in locational
accuracy of the urban CA when large neighborhoods are
incorporated?

This study addresses extended neighborhood effects on urban
dynamics by using an extended neighborhood structure that is
composed with cells with various influence weights based on their
distances from the central cell. We used the extended neighbor-
hood structure and calibrated parameter values to establish a large-

window neighborhood function. Based on this, we developed an
extended neighborhood model of urban land-use change, Logistic-
LNCA, and applied it to simulate land-use changes in Xiamen City of
China from 1990 to 2000. We then validated this method by using
independent data acquired between 2000 and 2010.

The methodology for this study is given in the next section,
together with a concise flowchart of the Logistic-LNCA model.
Simulation experiments and result evaluations are presented in
section three. Results are discussed in section four, and conclusions
and further research directions are provided in section five.

2. Modeling methods

2.1. Model calibration based on logistic regression

Urban models simulate urban morphology evolution under
various scenarios by characterizing a series of development pro-
files, which include physical attributes, socioeconomic status,
planning and zoning constraints, and the effects of complex
neighborhood interactions. Spatiotemporal models based on CA
can reveal the agglomeration effects of land use at a local scale or
the level of development through the iterative calculation of
local and simple rules. Thus, the two interrelated processes of ur-
ban land developmentdspontaneous growth and self-organized
growthdcan be reproduced in urban cellular lattices (Wu, 2002).
However, calibrating the contributions of the various aforemen-
tioned attributes to land development is a critical step to achieve
more realistic and reliable urban CA simulations. Logistic regression
or the multinomial logit model can be used to estimate the rela-
tionship between urban land-use changes and corresponding
locational features (Bishop, 2006; McCullagh and Nelder, 1989;
McMillen, 1989). More specifically, logistic regression can be seen
as a process to extract the coefficients of the empirical relationships
between observed land-use changes and driving forces in the
integration with urban CA simulation (Wu, 2002).

Sample size and sampling strategy are two basic issues that
affect the results of logistic regressions (Hirzel and Guisan, 2002;
Huang et al., 2009; Munroe et al., 2004; Xie et al., 2005). Because
sample size and resultant errors have an inverse relationship, a
large sample size can better represent the characteristics of the
study area but requires greater computing resources.

The sampling methods used in logistic regression models
generally include systematic and random sampling. Systematic
sampling can reduce spatial autocorrelation but may lose detailed
information on some relatively isolated cells. Random sampling
may better represent the population, but cannot effectively reduce
spatial autocorrelation, especially local spatial dependence (Xie
et al., 2005). A reasonable sampling scheme should maintain a
balance between spatial autocorrelation and effective population
representation (Huang et al., 2009). Considering the multiple
characteristics of urban land-use modeling, we integrated sys-
tematic and random sampling, namely, proportional random-
stratified sampling and extracted adequate samples to eliminate
the spatial dependence of the population (Xie et al., 2005).

Generally, urban land-use change models quantify the local
transition suitability of each cell from a set of demographic,
econometric, and physical factors (Arsanjani et al., 2013; Fuglsang
et al., 2013; Lauf et al., 2012). Cells with higher suitability are
given higher probabilities in transition rules. In urban expansion
simulations, the cellular space can be classified into two types,
developed cells (built-up land) and undeveloped cells (non built-up
land). The local development suitability at a location can be
considered a function of various independent spatial variables,
including elevation, slope, distance to the city center, distance to
the town center, distance to the main road, distance to the railway,
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