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Bayesian inference has found widespread application and use in science and engineering to reconcile
Earth system models with data, including prediction in space (interpolation), prediction in time (fore-
casting), assimilation of observations and deterministic/stochastic model output, and inference of the
model parameters. Bayes theorem states that the posterior probability, p(HIY) of a hypothesis, H is
proportional to the product of the prior probability, p(H) of this hypothesis and the likelihood, L(HJ?) of
the same hypothesis given the new observations, Y, or p(H|Y) ocp(H)L(H‘Y). In science and engineering, H
often constitutes some numerical model, #(x) which summarizes, in algebraic and differential equations,
state variables and fluxes, all knowledge of the system of interest, and the unknown parameter values, X
are subject to inference using the data Y. Unfortunately, for complex system models the posterior dis-
tribution is often high dimensional and analytically intractable, and sampling methods are required to
approximate the target. In this paper I review the basic theory of Markov chain Monte Carlo (MCMC)
simulation and introduce a MATLAB toolbox of the DiffeRential Evolution Adaptive Metropolis (DREAM)
algorithm developed by Vrugt et al. (20083, 2009a) and used for Bayesian inference in fields ranging from
physics, chemistry and engineering, to ecology, hydrology, and geophysics. This MATLAB toolbox pro-
vides scientists and engineers with an arsenal of options and utilities to solve posterior sampling
problems involving (among others) bimodality, high-dimensionality, summary statistics, bounded
parameter spaces, dynamic simulation models, formal/informal likelihood functions (GLUE), diagnostic
model evaluation, data assimilation, Bayesian model averaging, distributed computation, and informa-
tive/noninformative prior distributions. The DREAM toolbox supports parallel computing and includes
tools for convergence analysis of the sampled chain trajectories and post-processing of the results. Seven
different case studies illustrate the main capabilities and functionalities of the MATLAB toolbox.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and scope

environmental models that use algebraic and (stochastic) ordinary
(partial) differential equations (PDEs) to simulate the behavior of a

Continued advances in direct and indirect (e.g. geophysical,
pumping test, remote sensing) measurement technologies and
improvements in computational technology and process knowl-
edge have stimulated the development of increasingly complex
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myriad of highly interrelated ecological, hydrological, and biogeo-
chemical processes at different spatial and temporal scales. These
water, energy, nutrient, and vegetation processes are often non-
separable, non-stationary with very complicated and highly-
nonlinear spatio-temporal interactions (Wikle and Hooten, 2010)
which gives rise to complex system behavior. This complexity poses
significant measurement and modeling challenges, in particular
how to adequately characterize the spatio-temporal processes of
the dynamic system of interest, in the presence of (often)
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incomplete and insufficient observations, process knowledge and
system characterization. This includes prediction in space (inter-
polation/extrapolation), prediction in time (forecasting), assimila-
tion of observations and deterministic/stochastic model output,
and inference of the model parameters.

The use of differential equations might be more appropriate
than purely empirical relationships among variables, but does not
guard against epistemic errors due to incomplete and/or inexact
process knowledge. Fig. 1 provides a schematic overview of most
important sources of uncertainty that affect our ability to
describe as closely and consistently as possible the observed
system behavior. These sources of uncertainty have been dis-
cussed extensively in the literature, and much work has focused
on the characterization of parameter, model output and state
variable uncertainty. Explicit knowledge of each individual error
source would provide strategic guidance for investments in data
collection and/or model improvement. For instance, if input
(forcing/boundary condition) data uncertainty dominates total
simulation uncertainty, then it would not be productive to in-
crease model complexity, but rather to prioritize data collection
instead. On the contrary, it would be naive to spend a large
portion of the available monetary budget on system character-
ization if this constitutes only a minor portion of total prediction
uncertainty.

Note that model structural error (label 4) (also called epistemic
error) has received relatively little attention, but is key to learning
and scientific discovery (Vrugt et al., 2005; Vrugt and Sadegh,
2013).

The focus of this paper is on spatio-temporal models that may
be discrete in time and/or space, but with processes that are
continuous in both. A MATLAB toolbox is described which can be
used to derive the posterior parameter (and state) distribution,
conditioned on measurements of observed system behavior. At
least some level of calibration of these models is required to make
sure that the simulated state variables, internal fluxes, and output
variables match the observed system behavior as closely and
consistently as possible. Bayesian methods have found widespread
application and use to do so, in particular because of their innate
ability to handle, in a consistent and coherent manner parameter,
state variable, and model output (simulation) uncertainty.

IfY = {J;,...,,} signifies a discrete vector of measurements at
times t = {1,...,n} which summarizes the response of some
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environmental system § to forcing variables U = {uy,...,u,}. The
observations or data are linked to the physical system.

Y-3(x) +e,

(1)
where x* = {xj,...,xj} are the unknown parameters, and
e = {e1,...,.en} is a n-vector of measurement errors. When a hy-
pothesis, or simulator, Y« #(x*,1,yq) of the physical process is
available, then the data can be modeled using
?eg(x*,fj, (po) +E, 2)
where ¥, € W € R” signify the 7 initial states, and E = {ej,....en}
includes observation error (forcing and output data) as well as error
due to the fact that the simulator, %(-) may be systematically
different from reality, J(x*) for the parameters x". The latter may
arise from numerical errors (inadequate solver and discretization),
and improper model formulation and/or parameterization.

By adopting a Bayesian formalism the posterior distribution of
the parameters of the model can be derived by conditioning the
spatio-temporal behavior of the model on measurements of the
observed system response

(3)

where p(x) and p(x)?) signify the prior and posterior parameter
distribution, respectively, and L(x’?) = p(Y)x) denotes the likeli-

hood function. The evidence, p(Y) acts as a normalization constant
(scalar) so that the posterior distribution integrates to unity

p(?) = X/p(x)p(\?’x)dx: /p(x,Y)dx,

x

(4)

over the parameter space, X € y € R% In practice, p(?) is not
required for posterior estimation as all statistical inferences about
p(x‘Y) can be made from the unnormalized density

p<x‘\~{) ocp(x)L(x}?) (5)

If we assume, for the time being, that the prior distribution, p(x)
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Fig.1. Schematic illustration of the most important sources of uncertainty in environmental systems modeling, including (1) parameter, (2) input data (also called forcing or boundary
conditions), (3), initial state, (4) model structural, (5) output, and (6) calibration data uncertainty. The measurement data error is often conveniently assumed to be known, a rather
optimistic approach in most practical situations. Question remains how to describe/infer properly all sources of uncertainty in a coherent and statistically adequate manner.
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