
Automatica 47 (2011) 1219–1229

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Certifying spatially uniform behavior in reaction–diffusion PDE and
compartmental ODE systems✩

Murat Arcak ∗

Electrical Engineering and Computer Sciences Department, University of California, Berkeley, United States

a r t i c l e i n f o

Article history:
Received 18 January 2010
Received in revised form
15 June 2010
Accepted 25 October 2010
Available online 4 March 2011

Keywords:
Reaction networks
Diffusion
Distributed systems
Linear matrix inequalities

a b s t r a c t

We present a condition that guarantees spatial uniformity for the asymptotic behavior of the solutions of
a reaction–diffusion PDE with Neumann boundary conditions. This condition makes use of the Jacobian
matrix of the reaction terms and the second Neumann eigenvalue of the Laplacian operator on the given
spatial domain, and eliminates the global Lipschitz assumptions commonly used inmathematical biology
literature. We then derive numerical procedures that employ linear matrix inequalities to certify this
condition, and illustrate these procedures on models of several biochemical reaction networks. Finally,
we present an analog of this PDE result for the synchronization of a network of identical ODE models
coupled by diffusion terms. From a systems biology perspective, the main contribution of the paper is to
blend analytical and numerical tools from nonlinear systems and control theory to derive a relaxed and
verifiable condition for spatial uniformity of biological processes.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Spatially distributedmodels are essential for understanding dy-
namical phenomena that are central to the development of multi-
cellular organisms. Within the cell, gradients of protein activities
organize signaling around cellular structures and provide posi-
tional cues for important processes, such as division (Kholodenko,
2006). In a field of cells, concentration gradients of morphogens
lead to different gene expression patterns, allowing distinct cell
types to emerge in early development. One of the theories for
spatial organization and pattern formation is based on diffusion-
driven instability (Segel & Jackson, 1972; Turing, 1952), which has
been a subject of intense study as surveyed in Murray (1989),
Cross and Hohenberg (1993) and Othmer, Painter, Umulis, and Xue
(2009). This phenomenon occurs when one of the higher spatial
modes in the reaction–diffusion partial differential equation (PDE)
is destabilized by diffusion, thus causing nonuniformities to grow.

Understanding when the solutions of a reaction–diffusion PDE
exhibit asymptotically uniform behavior is an important problem
because certification of uniformity rules out diffusion-driven
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instabilities. In addition, sufficient conditions for uniformity, when
negated, serve as necessary conditions for such instabilities and
help identify reaction network topologies that have the ability to
generate spatial patterns. Indeed, designing circuits for pattern
formation is one of the current research topics in synthetic biology,
with applications envisioned in tissue engineering, biomaterial
fabrication and biosensing (Basu, Gerchman, Collins, Arnold, &
Weiss, 2005). The standard approach to proving spatial uniformity
in the literature is to establish exponential decay of initial
nonuniformities by using global Lipschitz bounds on the vector
field representing reaction terms (Ashkenazi & Othmer, 1978;
Conway, Hoff, & Smoller, 1978; Jones & Sleeman, 1983; Othmer,
1977).

In the first part of this paper, we study the reaction–diffusion
PDE:

∂x
∂t

= f (x) + D∇
2x, (1)

subject to Neumann boundary conditions and other technical
assumptions detailed in Section 2, and give a condition for uniform
behavior of the solutions that does not rely on a global Lipschitz
assumption on f (x). Instead, our main result (Theorem 1) requires
that a Lyapunov inequality be satisfied by the matrix J(x) − λ2D,
where

J(x) :=
∂ f (x)
∂x

(2)

is the Jacobian and λ2 is the second Neumann eigenvalue of the op-
erator L = −∇

2 on the given spatial domain. Evenwhen the global
Lipschitz condition of Ashkenazi and Othmer (1978), Conway et al.
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(1978), Jones and Sleeman (1983) and Othmer (1977) holds, our
result can achieve orders of magnitude improvements over the es-
timates obtained from this Lipschitz bound (see Example 1 for a
comparison).

In the second part of the paper (Section 3), we parameterize
J(x) with constant matrices and develop procedures to verify the
Lyapunov inequality employed in Theorem 1. The first procedure,
described in Theorem 2, incorporates J(x)within convex and conic
hulls of constant matrices and derives a linear matrix inequality
(LMI) (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994) for the
vertices. The second procedure, presented in Theorem 3, studies
a special convex set and reduces the dimension of the LMI in
Theorem 2. For reaction networks that exhibit special structures,
the LMI in Theorem3 is also amenable to analytical feasibility tests.
One such test is illustrated in Example 1 on a variant (Thron, 1991)
of Goodwin’s model (Goodwin, 1965) for oscillations in enzyme
synthesis. In Example 2, we study a model by Goldbeter (1995)
for circadian rhythms and investigate the feasibility of the LMI
numerically. These examples are representative of other common
reactionnetwork structures and are employedhere to illustrate the
main results of the paper, rather than to solve specific problems
associated with the biological phenomena they represent. Two
other examples are presented in Section 4 to demonstrate the
applicability of the results to bistable systems (Example 3) and to
investigate which structural properties of the reactions cause the
conditions of Theorem 1 to fail in a network that exhibits spatial
patterns (Example 4).

In a recent study (Jovanović, Arcak, & Sontag, 2008), we gave
conditions for the stability of the spatially uniform fixed point
for reaction–diffusion systems where the reaction terms exhibit a
cyclic structure. In the present paperwe do not restrict ourselves to
cyclic reactions and, more importantly, we do not require that the
attractor be a fixed point. Indeed, the reactions in Examples 1 and
2 exhibit limit cycles and Theorem 1 guarantees spatial uniformity
of the oscillations rather than stability of a fixed point.

In the third part of the paper (Section 5), we derive an analog of
Theorem 1 for a compartmental ODE model where the compart-
ments represent a finite number of well-mixed spatial domains
coupled via diffusion terms (Hale, 1997). Our main result (The-
orem 4) in this part employs the same condition as Theorem 1,
where λ2 now represents the second smallest eigenvalue of the
Laplacian matrix for the graph describing the coupling of the sub-
systems. The proof of this result exploits properties of the Lapla-
cian matrix that are analogous to those of the Laplacian operator
employed in Theorem 1.

2. Spatially uniform behavior in reaction–diffusion PDEs

Let Ω be a bounded domain in Rr with smooth boundary
∂Ω , and consider (1) where x(t, ξ) ∈ Rn, f (·) is a continuously
differentiable vector field, and ∇

2x := [∇
2x1 · · · ∇

2xn]T is the
vector Laplacian with respect to the spatial variable ξ . We take
D ∈ Rn×n to be an arbitrary real matrix for generality; however, in
a typical reaction–diffusion system, D is a diagonal matrix of zero
or positive diffusion coefficients di for species i = 1, . . . , n. We
assume Neumann boundary conditions:

∇xi(ξ) · n̂(ξ) = 0 ∀ξ ∈ ∂Ω, i = 1, . . . , n (3)

where n̂ is a vector normal to the boundary ∂Ω . Well-posedness
of (1)–(3) is not emphasized in this paper; we refer the reader
to Morgan (1989), Smith (1995, Chapter 7.3) and Smoller (1983,
Chapter 14) for results on the existence of classical solutions to
reaction–diffusion PDEs with a diagonal diffusion matrix D.

To establish a condition under which solutions x(t, ξ) exhibit
uniform behavior over the spatial domain Ω , we denote by:

π{v} := v − v̄ (4)

the deviation of a function v = v(ξ) from its average:

v̄ :=
1

|Ω|

∫
Ω

v(ξ)dξ . (5)

In the derivations below, we also use the L2(Ω) inner product:

⟨u, v⟩L2(Ω) :=

∫
Ω

uT (ξ)v(ξ)dξ (6)

and norm:

‖v‖L2(Ω) :=


⟨v, v⟩L2(Ω). (7)

We let 0 = λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · denote the eigenvalues of
the operator L = −∇

2 on Ω with Neumann boundary condition:

Lφk(ξ) = λkφk(ξ), ∇φk(ξ) · n̂(ξ) = 0 ∀ξ ∈ ∂Ω, (8)

and make use of the second smallest eigenvalue, λ2, in our main
result:

Theorem 1. Consider the reaction–diffusion system (1)–(3) and let
λ2 be the second smallest eigenvalue of the operator L = −∇

2 on Ω

with Neumann boundary condition as in (8). If there exists a convex
set X ⊆ Rn, a matrix P = PT > 0, and a constant ϵ > 0 such that

P (J(x) − λ2D) + (J(x) − λ2D)T P ≤ −ϵI ∀x ∈ X (9)

PD + DTP ≥ 0, (10)

then, for every classical solution x(t, ξ) : [0, ∞) × Ω → X,

‖π{x(t, ξ)}‖L2(Ω) → 0 (11)

exponentially as t → ∞, where π{·} is as defined in (4)–(5). �

The second Neumann eigenvalue λ2 is a measure of the well-
connectedness of the spatial domain. Indeed, of all sets of given
volume, λ2 is maximized by the ball (Henrot, 2006). In situations
where λ2 is not easily calculable for the given domain Ω ,
Theorem 1 can be applied with a lower bound on λ2 at the cost of
making (9)–(10) more restrictive. A commonly used lower bound
on λ2 was derived for the Laplacian operator by Cheeger (1970),
and extended in Chung (1997) to Laplacian matrices of graphs.

Othmer (1977), followed by other papers (Ashkenazi & Othmer,
1978; Conway et al., 1978; Jones & Sleeman, 1983), studied the
reaction–diffusion system (1)–(3) with D = diag{d1, . . . , dn}, and
proved uniform behavior of the solutions under the condition:

sup
x∈X

‖J(x)‖ < λ2 min
i

{di}. (12)

Note that (12) implies (9) with P = I , which means that The-
orem 1 incorporates Othmer’s condition (12) as a special case.
Assumption (9) of Theorem 1 is far less restrictive than (12), and
is applicable to numerous practically important systems which do
not satisfy global Lipschitz bounds. As an illustration, consider the
Fitzhugh–Nagumomodel of neuron excitation and oscillations (see
e.g. Edelstein-Keshet, 2005), augmented herewith diffusion terms:

∂x1
∂t

= c

x1 −

1
3
x31 + x2


+ d1∇2x1 (13)

∂x2
∂t

=
1
c

(−x1 − bx2 + a) + d2∇2x2, c, b, d1, d2 > 0. (14)

The Jacobian matrix:

J(x) =


c(1 − x21) c

−
1
c

−
b
c


(15)
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