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a b s t r a c t

This paper discusses oscillation analysis of (a large number of) linearly coupled piecewise affine (PWA)
systems, motivated by various kinds of reaction–diffusion systems including cell-signaling dynamics and
neural dynamics. We derive a sufficient condition under which the system shows an oscillatory behavior
called Y-oscillation. It is known that the analysis of PWA systems is difficult due to their switching nature.
An important feature of the result obtained is that, under the assumption that every subsystem has a
specific property in common, the criteria can be rewritten in terms of coupling topology in an easily
checkable way, so it is applicable to large scale systems. The results obtained are applied to theoretical
investigation of the cardiac action potential generation/propagation represented by spatio-temporal
FitzHugh–Nagumo equations.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Many important oscillatory phenomena such as the circadian
rhythms (Crosthwaite, Dunlap, & Loros, 1997; Goldbeter, 1995;
Kholodenko, 2006) exist in the natural world. This has prompted
much theoretical research on modeling and analysis of oscillatory
phenomena, in particular for periodic orbits; e.g., monotonicity
(Angeli & Sontag, 2008), the Poincaré–Bendixson theorem (Mallet-
Paret, 1996;Mallet-Paret & Smith, 1990;Wang, Li, & Aihara, 2008),
Hopf bifurcation (Mees & Chua, 1979; Stan, 2005; Stan & Sepul-
chre, 2007), and Poincaré/impact maps (Goncalves, Megretski, &
Dahleh, 2003). Placed among these, the results in this paper are
closely related to spatially distributed phenomena observed in
reaction–diffusion systems (Turing, 1952). In Keener and Sneyd
(1998), Kholodenko (2006) and Murray (2003), we can find many
interesting biological examples with detailed analysis of partial
differential equation (PDE) models.

In our work, we concentrate on large scale arrays consisting
of mutually coupled nonlinear systems. This class covers spatially
discretized forms of the PDE models mentioned above, as well as
central pattern generator models (Collins & Stewart, 1993; Kopell
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& Ermentrout, 1988). For this class of coupled systems, various
kinds of theoretical analyses of oscillatory phenomena have been
obtained both in dynamical system theory (Heagy, Carrol, & Pecora,
1994; Hu, Yang, & Liu, 1998; Wu & Chua, 1995) and in the controls
community (Angeli & Sontag, 2008; Jovanović, Arcak, & Sontag,
2008). These results often focus on networks with some specific
coupling topology such as diffusive coupling and cyclic feedback.

Aside from the approaches listed above, in Pogromsky, Glad,
and Nijmeijer (1999), Y-oscillatory behavior in diffusively cou-
pled systems has been analyzed. This Y-oscillation, originally in-
troduced by Tomberg and Yakubovich (1989), is a general notion
of oscillatory phenomena that covers both periodic and aperiodic
trajectories; see Definition 1 for the mathematical description. By
introducing a new notion of semi-passivity, it has been proven
in Pogromsky et al. (1999) and Pogromsky and Nijmeijer (2001)
that there exists a diffusively coupled nonlinear system that is Y-
oscillatory and whose identical subsystems are globally asymptot-
ically stable at the origin. Furthermore, an approach similar to that
of Pogromsky et al. (1999) and further based on Hopf/pitchfork bi-
furcation has been proposed in Stan (2005) and Stan and Sepulchre
(2007) for global analysis of passive oscillators and their intercon-
nection. This line of passivity-based approach provides a checkable
condition for oscillatory phenomena including synchronization in
large scale coupled nonlinear systems, when passivity (in a suit-
ably weak sense) of all subsystems and the semi-positive definite-
ness of coupling matrices can be guaranteed. It should be noted
that it is not necessarily easy to verify semi-passivity of general
nonlinear systems though, in Steur, Tyukin, and Nijmeijer (2009),
certain neuronmodels are shown to be semi-passive in a construc-
tive manner.
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Concerning representation of nonlinearity, a piecewise affine
(PWA) approach has been extensively adopted in mathematical
physiology (Keener & Sneyd, 1998). In view of this, we derive an
easily verifiable sufficient condition under which the linearly cou-
pled PWA systems are Y-oscillatory. There are several numerical
methods for the analysis of PWA systems, e.g., the pioneering pa-
per (Johansson & Rantzer, 1998) and recent related works (Efimov
& Fradkov, 2009; Goncalves et al., 2003; Salinas-Varela, Stan, &
Goncalves, 2008). Unfortunately, it is still difficult to apply them
to the systems considered here, since the state dimension and the
number of modes quickly increases in the coupled dynamics. An
important feature of themain result, which is obtained by utilizing
the property of PWA systems explicitly, is that the criteria can be
rewritten in terms of the connection topologywhen the underlying
subsystemdynamics are identical. This provides a scalable criterion
with respect to the number of subsystems.

The paper is organized as follows. In the next section, we de-
scribe how PWA approximations can represent important proper-
ties of the original nonlinear models. In Section 3, we formulate
the problem, and then a sufficient condition for Y-oscillation is
given. In Section 4, we focus on a more specific class of lin-
early coupled systems consisting of identical subsystems.We show
that under a certain assumption they can be easily analyzed via
eigenvalue decomposition of the coupling matrix. The results ob-
tained are applied to theoretical investigation of the cardiac action
potential generation/propagation represented by spatio-temporal
FitzHugh–Nagumo equations. Section 5 concludes this paper.
Notation and conventions: For a matrix A, eig(A) denotes the set of
all eigenvalues. A squarematrix A is said to be Hurwitz if eig(A) is a
subset of the open left complexhalf-plane. Then×n identitymatrix
is In. For a vector x ∈ Rn, ‖ · ‖ denotes the Euclidean norm, that
is, ‖x‖ :=

√
xTx where T is the matrix transposition. The (block-

)diagonal matrix and the Kronecker product are represented by
diag and ⊗, respectively. For a set S, int S, ∂S and S̄ denote the
interior, boundary and closure of S.

2. PWA approximation of dynamical models in mathematical
physiology

In this section, we see how PWA systems can capture important
properties of physiological models (FitzHugh, 1969; Hindmarsh
& Rose, 1984; Hodgkin & Huxley, 1952; Nagumo, Arimoto, &
Yoshizawa, 1962) through approximating the FitzHugh–Nagumo
equation given by

d
dt

[
X1
X2

]
=

[
g(X1) − X2

ε(X1 − bX2) − εα

]
, (1)

g(X1) := −10X1(X1 − 1)(X1 − 0.5) (2)

where ε, b > 0 and α are real constants. We approximate the
nonlinear term in (2) by the piecewise affine function depicted in
Fig. 1:

g(X1) ≈ g̃(X1) :=


−5X1 + 5, if 0.8333 ≤ X1,
−5X1, if X1 ≤ 0.1667,
2.5X1 − 1.25, otherwise.

We set b = ε = 0.1 and show the time response of X1(t) for
α = 0.5 and α = 0.2 in Fig. 2. Though the initial state is the same
([X1(0), X2(0)]T = [0.6, −0.1]T, [0.2, −0.1]T), the behavior is
completely different. Inmathematical physiology, these properties
are referred to as the self-oscillation and excitability (convergence
after a possible temporal perturbation), and used to model the
behavior of neural networks. See Section 3.3 for the actual roles
of these properties in living organisms.

Fig. 1. Approximation of g .

Fig. 2. The self-oscillatory property with α = 0.5 (left) and the excitability
property with α = 0.2 (right).

In practice, we can increase the number of modes to obtain a
sufficiently accurate PWA vector field, depending on the smooth-
ness of the original nonlinearity and required accuracy. Note that it
would sometimes be valid to approximate physical systems directly
by PWAsystems, in particularwhen the dynamics is discontinuous.
Refer to Imura, Kashima, Kusano, Ikeda, and Morohoshi (2010) for
examples and references related to these topics. However, PWAap-
proximation may require more careful discussions for the case of
complex behaviors such as bifurcation (Stan, 2005; Stan & Sepul-
chre, 2007). This topic is beyond the scope of this paper.

3. Linearly coupled PWA systems

In general, it is crucial to investigate not only an individual
neural cell behavior, but also their large scale coupled array. In
what followswe discuss the latter dynamicswithin the framework
of linearly coupled PWA systems.

3.1. System representation

Let J be the number of subsystems. Throughout this paper, the
index j ∈ J := {1, 2, . . . , J} is used to express the jth subsystem.
Next, let {Si}i∈I be a family of closed subsets ofRn̄ indexed bymode
labels I := {1, 2, . . . , L}. This plays the role of state partitions since
we assume


i∈I Si = Rn̄ and Si have disjoint interiors. Then, the

system investigated in this paper is given by

ẋj = A(j)
ij
xj + b(j)

ij
+ D

−
k∈J

γjkxk, if xj ∈ Sij (3)

where xj ∈ Rn̄ and ij ∈ I denote the state variable and the
mode of the jth subsystem, and A(j)

ij
,D ∈ Rn̄×n̄, b(j)

ij
∈ Rn̄×1. When

D = 0, every subsystem is an autonomous L-mode piecewise affine
system with the switching signal ij. In other words, the third term
with nonzeroD specifies the linear interaction between these PWA
subsystems.

Note that the coupled system (3) is again a PWA system equi-
pped with LJ -modes and the state variable

x(t) :=

x1(t)T, x2(t)T, . . . , xJ(t)T

 T
∈ Rn

with n := J n̄. To see this, defining

i := (i1, i2, . . . , iJ) ∈ IJ ,
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