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a b s t r a c t

The estimation of energy crop yields is important, to help the firms responsible for collecting them to
estimate biomass production in a given area, for example. A Bayesian modelling framework for site-
specific yield estimation is presented in this paper. The proposed approach is based on a hierarchical
model describing between-site and within-site yield variability. Probability distributions are used to
describe the uncertainty of model estimations. The model can be fitted to site-specific yield data, to
obtain both average and site-specific yield estimates. Site-specific yield data may be obtained from
measurements for crop species other than those for which estimations are required, or from past
measurements on perennial crop species grown over a period of several years at a given site. These two
options were illustrated in two case studies, in which our model was used to estimate the yields of
several energy crops. In most situations, site-specific yield estimations were more accurate than average
estimations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Biomass (agricultural crops, wood, green or organic waste), as a
source of renewable energy, could help to ensure security of the
energy supply while reducing net greenhouse emissions and
increasing agroecosystem diversity (Heaton, 2004; Kerckhoffs and
Renquist, 2012). Biomass can be converted into several types of
energy, such as heat, electricity, and biofuel. Energy crops compete
for land with food and feed crops, and are therefore a source of
controversy. The growth of energy crops on surplus cropland and
degraded land unsuis for arable production appears to be a prom-
ising alternative (Metzger and Hüttermann, 2009; Rahman et al.,
2014) that could reduce the competitive pressure for land.
Another way of reducing this competition for land would be to
select energy crops with high yields.

Yield estimations can address different types of questions.
Consider, for example,Miscanthus� giganteus (hereafter referred to
asM. giganteus), a perennial energy crop with a high yield potential
(Heaton, 2004). This crop species is typically grown during 15e20
years. During the cultivation period, yield of M. giganteus varies
from year to year. The yield tends to increase during the first 3e5

years and then reaches amaximumvalue (Lesur et al., 2013;Miguez
et al., 2008). Temporal predictions of yield for this crop would thus
be useful, as they would help farmers and collecting firms to
anticipate the future yields of recently established crops in a given
area, thereby making it possible to estimate more accurately the
overall profitability of the crop, or the storage capacity required.

Yield estimations can also help bioenergy firms and farmers'
advisers to select the most appropriate energy crop from a list of
candidate species. It is generally possible to cultivate several types
of energy crop in any given area (Cadoux et al., 2014). As crop yields
vary considerably between sites and between years (Miguez et al.,
2012), it is not easy to identify the species likely to be the most
productive species. In the absence of yield data for a given energy
crop at a site of interest, available yield values for other energy
crops grown at the same site could be used to estimate yield of the
missing crop species. The development of models of this kind could
help bioenergy firms to diversify the energy feedstock.

Several types of process-based model have been proposed for
the simulation of energy crop yields, particularly for M. giganteus.
Clifton-Brown et al. (2000) developed a mechanistic model for
predicting M. giganteus yield in Southern Ireland. Another mecha-
nistic model, MISCANFOR, was developed by Hastings et al. (2009)
for the prediction ofM. giganteus yields as a function of climatic and
soil conditions. Miguez et al. (2009) developed a semi-mechanistic
model for estimating M. giganteus yield as a function of thermal
time. Recently, Strullu et al. (2014) developed a process-based
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model for simulating biomass dynamics in M. giganteus shoots. As
this model runs for one crop species only, it cannot be used to
compare yields of different crop species in a given growing area.
More generally, the calibration of parameters of process-based
models is difficult and requires a lot of experimental data
(Wallach, 2011). Some input variables of these models may be
difficult to measure in farmers' fields (e.g., mineral N in the soil at
the beginning of the crop cycle), limiting their potential
applications.

Lesur et al. (2013) and Miguez et al. (2008) developed statistical
models for estimating yield trends over time forM. giganteus. Mola-
Yudego and Aronsson (2008) also proposed a statistical model for
estimating yields of Salix (another perennial crop) over a period of
three years. These statistical models include only a limited number
of input variables, facilitating their large-scale use, but they may
not estimate yield values accurately, due to the variability of energy
crop yields across sites and years.

A Bayesian modelling framework made it possible to combine
statistical models with site-specific data for the estimation of en-
ergy crop yields. The principle is to adjust a statistical model to site-
specific yield data, and then to use the fitted model to estimate
unobserved yield values. With this approach, site-year effects are
estimated through the single or small number of site-specific yield
measurements used to adjust the model. These yield measure-
ments may be collected for the species of interest or for other
species cultivated at the same site. Thus, no information about soil
and climate data is required. Another important advantage of the
proposed Bayesian framework is that it provides a quantitative
assessment of uncertainty about yield estimation, in the form of a
probability distribution (Aguilera et al., 2011; Chen and Pollino,
2012).

The two datasets used in this study are described below. Then
our Bayesian framework is presented and its use is illustrated in
two case studies in which i) the yield of M. giganteus is estimated,
using past yield data for this species collected at a specific site (case
study 1), ii) the yields of 36 energy crop species are estimated from
yield data collected for alternative crop species (case study 2). The
accuracy of yield estimations is assessed in both case studies.

2. Materials and methods

2.1. Datasets used in the two case studies

The main characteristics of the two datasets are presented in
Table 1 and described in detail below.

2.1.1. Case study 1: dataset used to estimate yield of M. giganteus
for one extra year

This dataset was used to estimate M. giganteus yields in future
years from past yield data. Yield data were collected from 19
farmers' fields in eastern central France (Burgundy). This region has
a semi-continental climate with a mean annual rainfall of 723 mm
and a mean annual temperature of 10.9 �C (averaged over
2001e2014, measured locally at Ouges, 47�15046.300N, 5�4026.100E).
M. giganteus crops were established on nine fields in 2009 and 10
fields in 2010.

From the second growing season onwards, M. giganteus yields
were measured in February, as described by Bazot et al. (2014).
Yield was not measured during the first growing season (2009 or
2010), because biomass production levels were too low
(M. giganteus was crushed at the end of December). The last yield
measurements were made in February 2014. Three to four sets of
yield data were thus available per site, depending on the year of
establishment. These data are presented in Fig. 1.

2.1.2. Case study 2: dataset used to estimate yields of different
energy crop species

In this case study, the yield of an energy crop was estimated in a
given area from yield data collected in the same area, but for a
different crop species. The objective was to estimate the yields of an
energy crop species, hereafter denoted as species 2, for site-years
for which yields were measured for a reference species, hereafter
denoted as Ref, different from species 2. The idea was to estimate
the yield of species 2 in a given site-year from the yield of Ref
measured for the same site-year, based on the correlation between
the yields of the reference species Ref and species 2 in other site-
years.

A dataset of 856 observations of yield, expressed in tons of dry
matter per ha and per year (Laurent et al., 2015) was used. These
yield data were collected in 93 experimental site-years in 12
countries and were extracted from 28 published scientific papers.
Yields of at least two species were measured for each of the
experimental site-years included in the dataset. A separate subset
of data was defined for each of 31 pairs of species (Table 2, Fig. 2),
and was used to estimate yields of one species from yield data
collected for the other species in the same site-year.

2.2. Statistical model for yield estimations

2.2.1. General framework
A hierarchical Bayesian statistical model for crop yield estima-

tion was defined. A within-group level, a between-group level, and
a level defining prior distributions were included. Groups corre-
sponded either to sites (case study 1) or site-years (case study 2)
(Table 1).

2.2.1.1. Within-group level. This level describes the probability
distribution of the yield data within a given group (i.e., within a
given site or site-year). Let Yij be the jth yield data collected in the
ith group. Yij is related to a set of explanatory variables Xij (e.g., time,
crop species; Table 1) as follows:

Yij ¼ f
�
Xij; qi

�þ εij (1)

εij � N
�
0; s2

ε

�

where f is a function relating Yij to Xij and to a set of group-specific
parameters qi, and εij is a residual term. Here, all residuals are
assumed independent and normally distributed with variance s2

ε
,

but Eq. (1) can bemodified to deal with other types of distributions.

Table 1
Main characteristics of the datasets used in case studies 1 and 2.

Case study Group (index i) Explanatory variables (Xij) Model function (f)

Definition Number Definition Number Type

1 Site 9 or 10 Time 3 or 4 Logistic
2 Site-year From 2 to 25 Species 2 Linear
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