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a b s t r a c t

This study introduces a new open source software framework to support bottom-up environmental
systems planning under deep uncertainty with a focus on many-objective robust decision making
(MORDM), called OpenMORDM. OpenMORDM contains two complementary components: (1) a software
application programming interface (API) for connecting planning models to computational exploration
tools for many-objective optimization and sensitivity-based discovery of critical deeply uncertain factors;
and (2) a web-based visualization toolkit for exploring high-dimensional datasets to better understand
system trade-offs, vulnerabilities, and dependencies. We demonstrate the OpenMORDM framework on a
challenging environmental management test case termed the “lake problem”. The lake problem has been
used extensively in the prior environmental decision science literature and, in this study, captures the
challenges posed by conflicting economic and environmental objectives, a water quality “tipping point”
beyond which the lake may become irreversibly polluted, and multiple deeply uncertain factors that may
undermine the robustness of pollution management policies. The OpenMORDM software framework
enables decision makers to identify policy-relevant scenarios, quantify the trade-offs between alternative
strategies in different scenarios, flexibly explore alternative definitions of robustness, and identify key
system factors that should be monitored as triggers for future actions or additional planning. The web-
based OpenMORDM visualization toolkit allows decision makers to easily share and visualize their
datasets, with the option for analysts to extend the framework with customized scripts in the R pro-
gramming language. OpenMORDM provides a platform for constructive decision support, allowing an-
alysts and decision makers to interactively discover promising alternatives and potential vulnerabilities
while balancing conflicting objectives.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Software availability

� Name of Software: OpenMORDM
� Description: OpenMORDM is an open-source R library for
multiobjective robust decision making (MORDM). It includes
support for loading datasets from a number of sources including
CSV, XLS, XLSX, databases, and R matrices and data frames;
visualizing the data sets using various 2D and 3D plots;

performing scenario discovery and trade-off analysis; and
computing uncertainty/robustness metrics. OpenMORDM also
includes a web-based data exploration and visualization toolkit.

� Developer: D. Hadka (dmh309@psu.edu) with contributions by
P. Reed and K. Keller.

� Funding Source: Development was partially supported by the
National Science Foundation through the Network for Sustain-
able Climate Risk Management (SCRiM) under NSF cooperative
agreement GEO-1240507 as well as the Penn State Center for
Climate Risk Management.

� Source Language: R
� Supported Systems: Unix, Linux, Windows, Mac
� License: GNU General Public License, Version 3
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� Availability: http://github.com/dhadka/OpenMORDM

1. Introduction

A critical component of environmental planning and manage-
ment is the search for robust solutions capable of withstanding de-
viations from our best projections of the future. This challenge is
amplified by the presence of deep uncertainty, where the suite of all
possible future events as well as their associated probability distri-
butions are themselves uncertain (e.g., future climatological and
hydroeconomic factors [Knight (1921), Lempert (2002), Olson et al.
(2012)]). These challenges have led to several “bottom-up” decision
support frameworks [Nazemi and Wheater (2014), Weaver et al.
(2013)], which move beyond trying to predict the most probable
future(s) to discover which states of the world (SOWs) may lead to
high consequence system vulnerabilities. This step helps with the
task of evaluating the likelihoods of the discovered system vulner-
abilities as it can help to focus the analysis on a subset of plausible
future scenarios (e.g., Lempert et al. (2012)). Bottom-up or
robustness-based approaches include Decision Scaling [Brown
(2010), Brown et al. (2012)], Information-Gap (Info-Gap) [Ben-
Haim (2004)], Robust Decision Making (RDM) [Lempert (2002),
Lempert et al. (2013, 2006), Groves and Lempert (2007), Lempert and
Collins (2007)], and Many-Objective Robust Decision Making
(MORDM) [Kasprzyk et al. (2013)]. As highlighted by Herman et al.
(2015), these bottom-up frameworks can be generalized into four
steps: identifying decision alternatives, sampling states of the world,
specifying robustness measures, and performing scenario discovery
to identify the most important uncertainties. The final step, scenario
discovery, is commonly used to find policy-relevant controls by
determining the ranges of each uncertainty leading to system failure
[Lempert et al. (2006)]. Herman et al. (2015) note that while these
methods are often defined at a conceptual level, specific imple-
mentations share a number of potentially interchangeable concepts
which should be compared to understand consequences for decision
support. This work addresses the need for software and visualization
tools to flexibly support the quantitative components of these
“bottom-up” environmental systems planning frameworks, which
share the goal of identifying robust solutions. The following para-
graphs introduce the conceptual frameworks for decision support
under deep uncertainty, while the quantitative methods imple-
mented in this work are described in Section II.

Robust Decision Making (RDM), like other “bottom-up” ap-
proaches, seeks to distinguish robust solutions which provide
satisfactory performance across many plausible SOWs [Lempert
(2002), Lempert et al. (2013), Groves and Lempert (2007), Lempert
and Collins (2007)]. Given a pre-specified set of alternatives to
analyze, RDM subjects each to an ensemble of SOWs that are treated
as exploratory samples over plausible ranges of uncertain factors
[Bryant and Lempert (2010), Groves and Lempert (2007), Lempert
et al. (2006, 2012)]. The goal d as is generally the case in Decision
Scaling and Info-Gapd is to identify future scenarios thatmay cause
the system to fail. RDM studies often adopt a “satisficing” approach
[Simon (1959)], in which solutions must satisfy performance re-
quirements across many plausible futures rather than provide
optimal performance in a single future. Using a satisficing approach,
robustness can be quantified with the domain criterion [Schneller
and Sphicas (1983), Starr (1962)] which aims to maximize the vol-
ume of the uncertain factor space in which performance re-
quirements are satisfied [Lempert and Collins (2007)]. Additionally,
RDM analyses typically employ the Patient Rule Induction Method
(PRIM) [Friedman and Fisher (1999)] to perform a high-dimensional
sensitivity analysis for scenario discovery in order to identify the
ranges of uncertain factors most likely to cause system failure

[Bryant and Lempert (2010), Groves and Lempert (2007), Lempert
et al. (2006, 2008)]. RDM builds upon exploratory modeling
[Bankes (1993), Kwakkel and Pruyt (2013)] by providing a systematic
approach to identifying vulnerabilities.

Info-Gap analysis aims to quantify the maximum allowable
deviation of deeply uncertain system factors that can be tolerated
while still satisfying performance requirements [Ben-Haim (2004),
Hipel and Ben-Haim (1999), Hall et al. (2012)]. Uncertain factors are
sampled radially outward from a baseline (expected) future state of
the world until a failure condition is reached; the distance from the
baseline at which this occurs is termed a, or the “uncertainty ho-
rizon” [Hall et al. (2012), Korteling et al. (2013)]. Note that in this
definition, there is no mention of probability distributions for the
uncertainties. Rather, a defines the distance in the space of deeply
uncertain factors between the baseline (expected) state of the
world and the nearest state of the world in which the model pre-
dicts system failure. It assumes that a larger value of a implies the
system is more resilient to perturbations in the deeply uncertain
parameters. However, a fails to identify which specific uncertain
factors, or combinations of factors, predict system failure. Recent
examples of Info-Gap applications in water resources planning
problems include Hine and Hall (2010) and Matrosov et al. (2013).

Decision Scaling, like other “bottom-up” approaches, inverts the
decision making process. Rather than focusing on predictive dis-
tributions (derived, for example, by downscaling of Atmospheric-
Ocean General Circulation Model (AOGCM) projections), Decision
Scaling first aims to identify thresholds likely to trigger conse-
quential system risks. The approach is a three-step process of (1)
identifying key concerns and decision thresholds, (2) modeling the
response to changing environmental conditions, and (3) estimating
the relative probability of the critical environmental thresholds
being crossed [Brown et al. (2012)]. Decision Scaling studies typi-
cally focus on uncertain climate factors, though recent work ex-
tends the approach to include hydroeconomic factors [Ghile et al.
(2014), Lownsbery (2014)]. Decision Scaling's most significant dif-
ference from the other decision support frameworks is its
assumption that the likelihoods associated with changes in tem-
perature and precipitation can be inferred as subjective probabili-
ties. The subjective probabilities are developed via expert
evaluations of how SOWs attained from statistical weather gener-
ators relate to AOGCM projections [Brown et al. (2012)]. Decision
Scaling has been most widely used as a discrete choice framework
for choosing between pre-specified design alternatives [e.g., Moody
and Brown (2013)] or as a vulnerability analysis to characterize the
risks of existing systems [Ghile et al. (2014), Turner et al. (2014)].

In the Decision Scaling and Info-Gap frameworks, it is common
to analyze a relatively small set of discrete decision alternatives that
are pre-specified by stakeholders. This reflects a high degree of
knowledge about system behavior under uncertainty, and may
cause an analysis to be vulnerable to a significant status quo bias
[Brill et al. (1990)]. Furthermore, pre-specified alternatives may
overlook important trade-offs between conflicting objectives that
reflect decision relevant performance requirements or tensions
between stakeholders [Herman et al. (2014)]. RDM analyses can
also suffer from these issues if the practitioner explores only a fixed
set of alternatives. To overcome these challenges, Kasprzyk et al.
(2013) propose Many-Objective Robust Decision Making
(MORDM), in which alternatives are discovered via many-objective
optimization in the projected future state of the world. MORDM
supports constructive learning to improve decisions for complex,
ill-defined environmental planning and management problems.
This follows the framework of Many-Objective Visual Analytics
(MOVA) [Woodruff et al. (2013)], a foundation for constructive
decision aiding [Tsoukias (2008), Roy (1999)] in which problem
framing is performed interactively with stakeholder feedback.
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