
Automatica 50 (2014) 1336–1348

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Synthesis of insertion functions for enforcement of opacity
security properties✩

Yi-Chin Wu 1, Stéphane Lafortune
Department of EECS, University of Michigan, Ann Arbor, United States

a r t i c l e i n f o

Article history:
Received 19 May 2013
Received in revised form
23 October 2013
Accepted 12 February 2014
Available online 17 March 2014

Keywords:
Discrete event systems
Opacity

a b s t r a c t

Opacity is a confidentiality property that characterizes whether a ‘‘secret’’ of a system can be inferred by
an outside observer called an ‘‘intruder’’. In this paper, we consider the problem of enforcing opacity in
systems modeled as partially-observed finite-state automata. We propose a novel enforcement mecha-
nism based on the use of insertion functions. An insertion function is a monitoring interface at the output
of the system that changes the system’s output behavior by inserting additional observable events. We
define the property of ‘‘i-enforceability’’ that an insertion function needs to satisfy in order to enforce
opacity. I-enforceability captures an insertion function’s ability to respond to every system’s observed
behavior and to output only modified behaviors that look like existing non-secret behaviors. Given an
insertion function, we provide an algorithm that verifies whether it is i-enforcing. More generally, given
an opacity notion, we determine whether it is i-enforceable or not by constructing a structure called the
‘‘All Insertion Structure’’ (AIS). The AIS enumerates all i-enforcing insertion functions in a compact state
transition structure. If a given opacity notion has been verified to be i-enforceable, we show how to use
the AIS to synthesize an i-enforcing insertion function.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cybersecurity is an increasingly important issue as computers
and networks are integrated into every aspect of our lives. Rang-
ing from stealing personal identification information to infiltrating
national websites to conduct espionage, attackers in cyberspace
target a wide range of systems. In this research, we study an im-
portant cybersecurity property called ‘‘opacity’’, based on the con-
trol theory for Discrete Event Systems (DES). Opacity characterizes
whether some secret information of a system can be inferred by
outside observers. Introduced in the computer science commu-
nity (Mazaré, 2003), opacity has become an active research topic
in DES, as this class of dynamic systems provides suitable formal
models and analytical techniques for investigating opacity (Bryans,
Koutny, Mazaré, & Ryan, 2008; Bryans, Koutny, & Ryan, 2005; Sa-
boori & Hadjicostis, 2007).

✩ This workwas partially supported by the NSF Expeditions in Computing project
ExCAPE: Expeditions in Computer Augmented Program Engineering (grant CCF-
1138860). The material in this paper was presented at the 51st IEEE Conference on
Decision and Control (CDC 2012), December 10–13, 2012, Maui, Hawaii, USA. This
paper was recommended for publication in revised form by Associate Editor Bart
De Schutter under the direction of Editor Ian R. Petersen.

E-mail addresses: ycwu@umich.edu (Y.-C. Wu), stephane@umich.edu
(S. Lafortune).
1 Tel.: +1 7348468150; fax: +1 734 763 8041.

The ingredients of the DES formulation of an opacity problem
are: (1) the system has a secret; (2) the system is only partially ob-
servable; (3) the intruder is an observer who has full knowledge
of the system structure. The secret of the system is opaque if for
every behavior relevant to the secret, there is an observationally-
equivalent behavior that is not relevant to the secret. For simplic-
ity, we call the former ‘‘secret behavior’’ and the latter ‘‘non-secret
behavior’’. When opacity holds, the intruder is not sure if the se-
cret or the non-secret has occurred. The system is guaranteed the
‘‘plausible deniability’’ of the secret.

The secret of the system can be defined by any representation
in the given DES model, such as states and languages. With dif-
ferent representations of the secret, various opacity notions have
been introduced in the literature. For example, the secret canbede-
fined in terms of a sublanguage, the current state, the initial state,
a sequence of K states, or a set of initial–final state pairs. Opac-
ity notions corresponding to these various cases have been investi-
gated using different DES modeling formalisms such as Petri nets,
labeled transition systems, and automata; see e.g., (Bryans et al.,
2008, 2005; Cassez, Dubreil, & Marchand, 2012; Lin, 2011; Saboori
& Hadjicostis, 2007; Wu & Lafortune, 2013).

In this paper, we consider opacity problems in DES modeled
as finite-state automata (FSA). Given an opacity notion, methods
for verifying if the secret is opaque or not have been investigated
in Cassez et al. (2012), Lin (2011), Saboori and Hadjicostis (2008),
and Wu and Lafortune (2013). When a secret is not opaque, the

http://dx.doi.org/10.1016/j.automatica.2014.02.038
0005-1098/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.automatica.2014.02.038
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.02.038&domain=pdf
mailto:ycwu@umich.edu
mailto:stephane@umich.edu
http://dx.doi.org/10.1016/j.automatica.2014.02.038


Y.-C. Wu, S. Lafortune / Automatica 50 (2014) 1336–1348 1337

Fig. 1. The insertion mechanism.

ensuing question is: How can we enforce the secret to be opaque?
The focus of this paper is the development of an enforcement
mechanism for opacity notions. Many prior studies have designed
theminimally-restrictive opacity-enforcing supervisory controller
based on the supervisory control theory of DES; see, e.g., (Dubreil,
Darondeau, & Marchand, 2010; Saboori & Hadjicostis, 2012; Takai
& Oka, 2011). The system behavior under supervisory control is re-
stricted such that a behavior is disabled by feedback control if it is
going to reveal the secret. While the secret under this controller is
guaranteed to be opaque, this approachdoes not apply to situations
where the systemmust execute its full behavior. Another approach
to enforce opacity notions is to use a dynamic observer, which dy-
namicallymodifies the observability of every system event (Cassez
et al., 2012). Unlike a supervisory controller, a dynamic observer
allows the full system behavior, but it also erases some informa-
tion that was to be output. Such erasure could create ‘‘new’’ ob-
served strings that would not be seen in the original system (under
a static observable projection). This is not desirable because it
reveals clues about the defense model to the intruder. Another en-
forcement approach that allows the full systembehavior is the run-
time enforcement mechanism in Falcone and Marchand (2013).
This enforcementmechanism employs delayswhen outputting ex-
ecutions to enforce K -step opacity. However, this method applies
only to secrets for which time duration is of concern.

There aremany application areaswhere the above enforcement
mechanisms are not suitable. For example, in location-based ser-
vices, neither restricting users’ query behaviors nor erasing the lo-
cation information in queries is desirable. Also, to capture location
privacy for users’ home locations, we may need the notion of
initial-state opacity, for which delaying queries as in Falcone and
Marchand (2013) is not practical. We propose a new enforcement
mechanism that overcomes these limitations, based on the use of
insertion functions at run-time. As shown in Fig. 1, an insertion
function is a monitoring interface placed at the output of the sys-
tem. It receives an output behavior from the system, inserts an
additional observable string if necessary in order to prevent the
system from revealing the secret, and outputs themodified behav-
ior. The intruder is assumed to have no knowledge of the inser-
tion function at the outset. But by knowing the system structure,
the intruder may learn the existence of the insertion function from
observing themodified output. This would occur if for instance the
insertion function inserts random events. Hence, our goal is to syn-
thesize insertion functions such that they protect the secret behav-
ior and never reveal to the intruder that an insertion function has
been implemented.

Specifically, every modified output needs to replicate some
original non-secret behavior;moreover, insertion functions should
not interact with the system and must allow all system behav-
iors. It is the combination of these two requirements that makes
the design of insertion functions challenging. An insertion can
only be made if it assures protection of both the current and the
future system output. We characterize the requirements as the
i-enforceability property. Given an opacity notion, it is called i-
enforceable if there exists an i-enforcing insertion function.

The first questionwe consider iswhether a given insertion func-
tion is i-enforcing. For this purpose, we construct an equivalent

automaton that captures the modified system and use it to verify
i-enforceability of the function. Then, the next questionwe address
is whether there exists an i-enforcing insertion function that en-
forces the secret of a given system to be opaque. We provide an al-
gorithmic procedure that verifies i-enforceability of a given opacity
notion. The algorithm is based on a structure called the ‘‘All Inser-
tion Structure’’ (AIS), which enumerates in a compact manner all
i-enforcing insertion functions. To verify if opacity is i-enforceable,
it suffices to determine if the AIS is the empty structure or not.
Furthermore, if opacity is i-enforceable, we show how to use the
AIS to synthesize an i-enforcing insertion function. All these algo-
rithms are general enough so that they apply to four opacity no-
tions: current-state opacity, initial-state opacity, language-based
opacity, and initial-and-final-state opacity.

Other works in the computer science literature have also used
insertion functions to enforce security properties; see e.g., (Ligatti,
Bauer, &Walker, 2005; Schneider, 2000). However, the class of se-
curity policies considered does not include opacity. To the best of
our knowledge, our work is the first to address opacity enforce-
ment using insertion functions.

The remaining sections of this paper are organized as follows.
Section 2 introduces the system model and relevant definitions.
Section 3 reviews the basics of the opacity problem. Section 4 for-
mally defines insertion functions and the i-enforcing property. In
Section 5,wepresent our algorithm for verifying if a given insertion
function is i-enforcing. In Section 6, we show the 4-stage construc-
tion of theAll Insertion Structure (AIS) and verify i-enforceability of
a given opacity notion using the AIS. Section 7 presents the synthe-
sis of an i-enforcing insertion function. The complexity of the AIS
is analyzed in Section 8. Section 9 discusses opacity enforcement
by insertion in the context of opaque communications. Section 10
discusses how intruder’s knowledge of the insertion function
affects our results. Finally, Section 11 concludes the paper. A pre-
liminary and partial version of this paperwas presented in the con-
ference paper (Wu& Lafortune, 2012). Specifically, thematerials in
Sections 5 and 8–10 are new; the algorithms in Section 6 are im-
proved; full proofs of the theorems and examples omitted in Wu
and Lafortune (2012) are presented; and additional explanation
and discussion have been added.

2. Preliminaries

Automata models
We consider opacity problems in DES systems modeled as

finite-state automata. An automaton G = (X, E, f , X0) has a set of
states X , a set of events E, a deterministic state transition function
f : X × E → X , and a set of initial-states X0. In opacity prob-
lems, the initial state need not be known a priori by the intruder
and thus we include a set of initial states X0 in the definition of G.
The language generated by G is the system behavior that is defined
by L (G, X0) := {t ∈ E∗

: (∃i ∈ X0)[f (i, t) is defined]}. For simplic-
ity, we will use L (G) if the set of initial states is clearly defined. In
general, the system is partially observable. Hence, the event set is
partitioned into an observable set Eo and an unobservable set Euo.
Given an event e ∈ E, its observation is the output of the natural
projection P : E → Eo such that P(e) = e if e ∈ Eo and P(e) = ε
if e ∈ Euo ∪ {ε} where ε is the empty string. With this definition at
hand, projection P is extended from E → Eo to P : E∗

→ E∗
o in a

recursive manner: P(te) = P(t)P(e) where t ∈ E∗ and e ∈ E.
Inserted event set Ei

In our enforcement mechanism, the insertion function can in-
sert any event in Eo. Such an inserted event looks identical to a sys-
tem observable event. However, for the purpose of discussion, we
want to clearly distinguish between inserted events and observ-
able events. Thus, we define a set of inserted events Ei, where an



Download English Version:

https://daneshyari.com/en/article/696288

Download Persian Version:

https://daneshyari.com/article/696288

Daneshyari.com

https://daneshyari.com/en/article/696288
https://daneshyari.com/article/696288
https://daneshyari.com

