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a b s t r a c t

In this paper we introduce the notion of Dynamic Generalized Controllability and Observability functions
for nonlinear systems. These functions are called dynamic and generalized since they make use of addi-
tional states (dynamic extension) and are such that partial differential inequalities are solved in place of
equations. The presence of the dynamic extension permits the construction of classes of canonical con-
trollability and observability functions without relying on the solution of any partial differential equation
or inequality. The effectiveness of the proposed concept is validated by means of two applications: the
model reduction problem via balancing and the sensor deployment problem in a continuous stirred tank
reactor (CSTR).

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Minimal realization theory for linear systems provides the tool
to determine a state-space description of minimal order, the im-
pulse response of whichmatches the impulse response of the orig-
inal system. In situations inwhich this approach cannot be pursued
for practical or theoretical reasons, one may still be interested in
finding a lower-order representation that approximates the behav-
ior of the original model, thus solving the so-called model reduc-
tion problem (Antoulas, Sorensen, & Gugercin, 2001; Glover, 1984;
Moore, 1981; Pernebo & Silverman, 1982; Scherpen, 1993; Scher-
pen & Van Der Schaft, 1994).

The first step towards the solution of themodel reduction prob-
lem is the characterization of a measure of importance of the state
components according to some desired criterion. Controllability
and observability Gramians are well-knownmathematical tools to
describe linear systems in terms of their input/output behavior. In
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the case of locally asymptotically stable systems, this concept per-
mits an ordering of the states with respect to their input/output
energy, namely taking into account the control effort necessary to
steer the system from a specific state to the origin in infinite time
and the energy released by the output of the system initialized at
a particular state, respectively.

In the linear framework, the controllability and observability
functions are determined from the solutions of Lyapunov matrix
equations and are related to the controllability and observability
Gramians of the system.Mimicking the above ideas, controllability
and observability functions have been defined also for general non-
linear systems (Scherpen, 1993). The controllability and observ-
ability functions of nonlinear systems are the solution of first-order
partial differential equations, which may be hard or impossible to
determine analytically. This aspect represents a serious drawback
to the applicability of model reduction by balancing (of the con-
trollability and the observability functions) to practical cases.

Once these functions have beendetermined, there exists a (non-
linear) change of coordinates such that, in the new coordinates,
the functions are in the so-called balanced form (Scherpen, 1993).
After the coordinates transformation the components of the state
can be ordered according to the energy required to steer the state
and the output energy released by the corresponding initial condi-
tion. Therefore, if a state demands a large amount of energy to be
controlled, on one hand, and it is hardly observable (in terms of out-
put energy), on the other hand, then clearly the contribution of the
aforementioned state to the input/output behavior of the system
is negligible and could be ignored in a lower-order approximation.
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In addition, in the case of unstable nonlinear systems several
techniques have been proposed, such as LQG, HJB or H∞ balancing.
The latter has been introduced for linear systems in Mustafa
and Glover (1991) and subsequently extended to the nonlinear
case in Scherpen (1996). Moreover, it is shown in Scherpen and
Van Der Schaft (1994) that the HJB singular value functions,
obtained from the past and future energy functions, are strongly
interconnected with the Graph Hankel singular value functions,
derived bybalancing the controllability andobservability functions
of the normalized coprime factorizations of the nonlinear system.
As a result, the reduced order models obtained with the two
different approaches coincide. Finally, the assumption of zero-state
observability is relaxed inGray andMesko (1999) allowing for non-
zero inputs in the definition of the observability function.

The main contribution of the paper consists in the definition of
the notion of Dynamic Generalized Controllability and Observabil-
ity functions. They are said to be generalized and dynamic since
partial differential inequalities are solved, in place of equations,
in an extended state-space, respectively. In fact, the additional
statemay be considered as a dynamic extension introducing auxil-
iary dynamics to combine with a positive definite function. While
the notion of generalized Gramians has been introduced in the
literature, see for instance (Prajna & Sandberg, 2005; Sandberg,
2010; Sandberg & Rantzer, 2004), the idea of considering dynamic
Gramians is new. Interestingly, the main advantage of these func-
tions over the classical controllability and observability functions is
that the former can be constructively defined avoiding the explicit
solution of any partial differential equation or inequality. Prelim-
inary results about the notion of Dynamic Generalized Controlla-
bility and Observability function and its construction are reported
in Sassano and Astolfi (2012b). Different from Sassano and Astolfi
(2012b) an alternative notion of (matrix) algebraic P̄ solution is
considered here, which leads to significant simplifications in the
construction of such functions and, moreover, in the application
of the latter functions to the model reduction problem via optimal
balancing. In addition, a detailed discussion about the point-wise
minimization of the approximation error, intrinsically introduced
by the proposed functions, and a description of the application of
the latter functions to the problem of sensor deployment are re-
ported.

The rest of the paper is organized as follows. Section 2 in-
troduces the notion of Dynamic Generalized Controllability and
Observability functionswhich can be constructed, as shown in Sec-
tion 3, without relying on the solution of any partial differential
equation or inequality. A class of Dynamic Generalized Controlla-
bility and Observability functions is constructively defined in Sec-
tion 3. Finally, the effectiveness of the proposed notion is validated
by means of two different examples in Section 4. To begin with,
the application of the Dynamic Generalized Controllability and Ob-
servability functions to the problem of balancing andmodel reduc-
tion for nonlinear systems is discussed. Once the functions have
been constructed, a nonlinear system can be transformed into a
dynamically balanced form by means of a change of coordinates.
Then, the optimal sensor deployment problem is discussed and a
dynamic observability function is employed to determine whether
it ismore informative tomeasure the substrate or the biomass con-
centration in a continuous stirred tank reactor (CSTR). Conclusions
are drawn and future work is outlined in Section 5.

2. Dynamic generalized controllability and observability func-
tions

Consider a nonlinear system described by equations of the form

ẋ = f (x) + g(x)u, y = h(x), (1)

where x(t) ∈ Rn denotes the state of the system, u(t) ∈ Rm the
input, and y(t) ∈ Rp the output. The mappings f : Rn

→ Rn,
g : Rn

→ Rn×m and h : Rn
→ Rp are assumed to be sufficiently

smooth and such that f (0) = 0 and h(0) = 0, without loss of gen-
erality. By the latter assumption, there exist, possibly not unique,
continuousmatrix-valued functions F : Rn

→ Rn×n andH : Rn
→

Rp×n such that f (x) = F(x)x and h(x) = H(x)x, respectively, for all
x ∈ Rn. In what follows it is assumed that the linearization around
the origin of system (1) is controllable and observable. In addition
suppose that the system (1) is zero-state detectable, namely that
u(t) = 0 and y(t) = 0, for all t ≥ 0, imply that the state x(t) tends
to zero as time tends to infinity. Finally suppose that the zero equi-
librium of the system (1) is locally asymptotically stable.

Definition 1 (Scherpen, 1993). Consider the nonlinear system (1).
The functions, if they exist,

Lc(x̄) = min
u∈L2(−∞,0),x(−∞)=0,x(0)=x̄

1
2

 0

−∞

∥u(t)∥2dt (2)

and

Lo(x̄) =
1
2


∞

0
∥y(t)∥2dt, s.t. x(0) = x̄, u(t) ≡ 0, (3)

are the controllability and observability functions, respectively, of
system (1).

The function Lo may be unbounded if the zero equilibrium of
system (1) is unstable, whereas the controllability function Lc is
unbounded at x̄ by convention if the state x̄ cannot be reached
from zero. For simplicity, we suppose throughout the paper that
the controllability and observability functions are defined, namely
take finite values, at least in a neighborhood of the origin. If the
system (1) is linear, i.e.

ẋ = Ax + Bu, y = Cx, (4)

the controllability and observability functions are defined – with
the assumption of asymptotic stability of the zero equilibrium
point – as Lc(x̄) =

1
2 x̄

⊤P̄−1x̄ and Lo(x̄) =
1
2 x̄

⊤Q̄ x̄, respectively,
where the matrices P̄ = P̄⊤ > 0 and Q̄ = Q̄⊤ > 0 are solutions
of the Lyapunov equations AP̄ + P̄A⊤

+ BB⊤
= 0 and A⊤Q̄ +

Q̄ A + C⊤C = 0, respectively. The notion of Dynamic Generalized
Controllability andObservability functions is introduced in the two
following definitions, respectively.

Definition 2. Consider the nonlinear system (1). A Dynamic
Generalized Controllability function Vc is a pair (Dc, Lc) defined as
follows.

• Dc is the ordinary differential equation

ξ̇c = φc(x, ξc), (5)

with ξc(t) ∈ Rn and φc : Rn
× Rn

→ Rn, φc(0, 0) = 0, smooth
mapping.

• Lc : Ωc ⊆ Rn
× Rn

→ R, Lc(0, 0) = 0 and Lc(x, ξc) > 0 for
all (x, ξc) ∈ Ωc \ {0}, is such that

∂Lc

∂x
f (x) +

∂Lc

∂ξc
φc(x, ξc) +

1
2

∂Lc

∂x
g(x)g(x)⊤

∂Lc

∂x

⊤

≤ 0, (6)

for all (x, ξc) ∈ Ωc . Moreover (0, 0) is an asymptotically stable
equilibrium point of the system

ẋ = −f (x) − g(x)g(x)⊤
∂Lc

∂x

⊤

, ξ̇c = −φc(x, ξc). (7)
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