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a b s t r a c t

The extreme learning machine (ELM), a single-hidden layer feedforward neural network algorithm, was
tested on nine environmental regression problems. The prediction accuracy and computational speed of
the ensemble ELM were evaluated against multiple linear regression (MLR) and three nonlinear machine
learning (ML) techniques e artificial neural network (ANN), support vector regression and random forest
(RF). Simple automated algorithms were used to estimate the parameters (e.g. number of hidden neu-
rons) needed for model training. Scaling the range of the random weights in ELM improved its perfor-
mance. Excluding large datasets (with large number of cases and predictors), ELM tended to be the
fastest among the nonlinear models. For large datasets, RF tended to be the fastest. ANN and ELM had
similar skills, but ELM was much faster than ANN except for large datasets. Generally, the tested ML
techniques outperformed MLR, but no single method was best for all the nine datasets.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Linear models are simple, fast, and often provide adequate and
interpretable descriptions of how the predictors affect the outputs.
In particular, for prediction purposes they sometimes outperform
fancier nonlinear models (Hastie et al., 2009). However, environ-
mental problems are generally complex with many components,
such as trends, seasonality, interactions between predictors, and
nonlinear relationships (Kuligowski and Barros, 1998; Cawley et al.,
2007). Predictions by linear models may have accuracy limitations
due to the generalization (and extrapolation) of the environmental
problems by linear functions.

To overcome the limitations of linear models, nonlinear ma-
chine learning (ML) methods have been successfully used in envi-
ronmental problems (Cherkassky et al., 2006). Artificial neural
networks (ANN), support vector regression (SVR) and random for-
ests (RF) have been used to solve hydrological problems, such as the
prediction of 10-day reservoir inflows, downscaling precipitation,

and prediction of water resource variables (e.g. flow, water level,
nitrate, salinity and suspended sediment concentration) (Tripathi
et al., 2006; Chen et al., 2010; Maier et al., 2010; Cannon, 2012b;
Rasouli et al., 2012). Due to the large amount of research activity
in hydrology using ANN models, good review papers (Maier and
Dandy, 2000; Abrahart et al., 2012; Maier et al., 2010) are avail-
able in the hydrological literature. For hydrological problems,
gradient-based optimization methods are widely used to train ANN
models (Maier et al., 2010). This is also true for environmental
problems such as forecasting wind power (Kusiak et al., 2009) and
equatorial Pacific sea surface temperatures (Aguilar-Martinez and
Hsieh, 2009). However, nonlinear optimization by gradient
descent-based learning methods is computationally expensive and
may easily converge to local minima. Nature inspired evolutionary
computation algorithms have been successfully applied to ANN
training (Leung et al., 2003; Chen and Chang, 2009), however there
is no consensus on their superior skills or convergence speed
(Solomatine and Ostfeld, 2008; Piotrowski and Napiorkowski,
2011). Consequently, there is still a need for better and faster
ANN training algorithms.

The extreme learning machine (ELM) algorithm for single-
hidden layer feedforward neural networks (SLFNs) was proposed
by Huang et al. (2006). The ELM algorithm implements an SLFN
similar in structure to a traditional ANN model, but the ELM
randomly chooses the weights leading to the hidden nodes or
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neurons (HN) and analytically determines theweights at the output
layer (Schmidt et al., 1992). Once the activation function has been
chosen, the only parameter to be tuned in the ELM is the number of
HN. ELM has been used in different research areas (Sun et al., 2008;
Huang et al., 2011) and has been found to produce good general-
ization performance with learning times that are thousands of
times faster than traditional gradient-based ANN training
algorithms.

Correct adjustment of the model parameters is mandatory for
building a successful predictive model. For example, in ANN
models, the number of HN, the regularization parameter (i.e.
weight penalty parameter), and the algorithm for network training
all need to be specified (Haykin, 1998; Hsieh, 2009). Unfortunately
(with very few exceptions), there is no unique formula to estimate
the model parameters before training starts, so they are usually
determined by time-consuming trial and error. In addition, many
published articles do not reveal the details of parameter estimation,
hiding pitfalls and misuses of the technique employed in the
studies (Zhang, 2007; Maier et al., 2010; Wu et al., 2014). For ELM
the correct adjustment of the parameter is also crucial. Similar to
ANN, the optimal number of HN is problem dependent and un-
known in advance (Huang et al., 2006; Guorui et al., 2009; Liu and
Wang, 2010). Thus, the process to find the optimal number of HN is
also by the trial and error procedure, necessitating multiple ELM
runs (Parviainen and Riihimaki, 2013).

The objective of this study is to test whether the claims of ELM
having good generalization performance, requiring less computa-
tional time than other common nonlinear ML methods and having
only one parameter (the number of HN) to adjust, are applicable in
the context of environmental sciences.We applied ELM to nine very
different datasets. Multiple linear regression (MLR) (with stepwise
selection of predictors) was used as the benchmark to compare
accuracy (based on the root mean squared error and mean absolute
error) and computational time. We also used three nonlinear
techniques that have previously been successfully applied to
environmental problems as ML benchmarks, namely gradient-
based ANN (Cannon and Lord, 2000; Schoof and Pryor, 2001;
Krasnopolsky, 2007), SVR (Tripathi et al., 2006; Lima et al., 2013),
and RF (Ibarra-Berastegi et al., 2011). We combined the ML tech-
niques with simple automated procedures to search for optimal
parameters.

Section 2 describes the datasets used in our study. The regres-
sion methods are presented in Sections 3, 4 and 5. Results and
discussion of the experiments are given in Section 6, followed by
summary and conclusion in Section 7.

2. Data description

In our present peer-reviewed publication system, publications
biased in favour of newmethods are common because authors tend
to present their new methods in the best possible light to enhance
their chances of passing the peer review. For instance, an author
might test their new method against a traditional method on two
different datasets. If the new method fails against a traditional
method on one of the datasets, the author could ignore the failure
and write a journal paper describing the new method using only
the successful case (Hsieh, 2009; Zhang, 2007; Elshorbagy et al.,
2010a). Environmental datasets span a broad range in terms of
size, number of predictors, degree of nonlinearity, signal-to-noise
ratio, etc. Cherkassky et al. (2006) grouped the environmental
sciences applications in three domains: climate, Earth and ocean
(which is closely related to climate because global processes on the
Earth and in the ocean directly influence the climate), and hy-
drology. Thus, to explore the applicability of the ELM as a prediction
tool in environmental sciences, we selected nine different datasets

from the three domains, with four of them in climate (ENSO, YVR,
PRECIP and TEMP), two in Earth and ocean (WIND and SO2), and
three in hydrology (SFBAY, FRASER and STAVE) (see the Appendix
for details). While the selected datasets by no means span the
whole range of environmental datasets, they do provide better
insight into the advantages and disadvantages of various methods
than a single dataset.

As part of the ML development process, the available data are
generally divided into training and testing subsets. The training set
is used to build the ML models and the testing set is used to
determine the generalization ability of the trained models. Table 1
shows the specifications of the datasets and the basic descriptive
statistics of the predictand (i.e. response variable) of the training
and testing sets.

One of the most important steps in the ML modelling process is
the determination of an appropriate set of predictors (Cherkassky
et al., 2006; Solomatine and Ostfeld, 2008; Maier et al., 2010).
Usually, they are determined on an ad hoc basis or by using a priori
system knowledge (Maier and Dandy, 2000). Since the focus of this
research is the comparison of ML models, emphasis was not given
to the identification of the optimal predictors for each particular
dataset.

3. Extreme learning machines

The key element of an ANN is its distributed, nonlinear struc-
ture. An ANN is composed of a large number of highly inter-
connected neurons (or perceptrons) divided in layers (input,
hidden, output), but working in concert to solve a prediction
problem (Haykin, 1998).

The multilayer perceptron (MLP) architecture is probably the
most popular type of ANN (Kuligowski and Barros, 1998; Cawley
et al., 2003; Haylock et al., 2006) and consists of at least one hid-
den layer sandwiched between the input and output layers.
Training of the ANN model involves adjusting the parameters
iteratively so the error between the model output by and the pre-
dictand data y is minimized. The backpropagation algorithm is
often used to calculate the gradient of the error function, with a
gradient-descent approach used to reduce the mean squared error
iteratively, which could be time consuming. There are also others
issues to consider such as the number of learning epochs, learning
rate, stopping criteria, regularization and/or local minima. To
overcome some of these issues, an algorithm called extreme
learning machine (ELM) for SLFNs can be used.

The SLFN can be defined as:

by j ¼
XL
i¼1

bis
�
wi$xj þ bi

�þ b0; ðj ¼ 1;…;NÞ (1)

Table 1
Specification of the tested datasets.

Datasets # observations # predictors Predictand

Mean Std. dev.

Train Test Train Test Train Test

ENSO 264 120 8 �0.049 �0.025 0.902 0.800
SFBAY 475 157 6 1.177 1.145 1.226 1.359
WIND 279 100 160 36,952 40,655 28,610 29,165
FRASER 2557 1095 4 1.779 1.693 0.547 0.528
YVR 3286 1694 3 1.451 1.444 0.457 0.460
STAVE 5258 1260 25 3.134 3.088 0.909 0.919
PRECIP 4213 2074 106 0.984 0.981 0.342 0.341
TEMP 7117 3558 106 �0.002 �0.010 1.010 0.983
SO2 15,110 7533 27 3.125 3.147 0.929 0.924
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