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a b s t r a c t

This paper deals with quadratic stability and feedback stabilization problems for continuous bimodal
piecewise linear systems. First, we provide necessary and sufficient conditions in terms of linear matrix
inequalities for quadratic stability and stabilization of this class of systems. Later, these conditions are
investigated from a geometric control point of view and a set of sufficient conditions (in terms of the zero
dynamics of one of the two linear subsystems) for feedback stabilization are obtained.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Common quadratic Lyapunov functions are among the most
popular tools in the stability of linear switching systems, both for
state-independent (Agrachev & Liberzon, 2001; Liberzon, 1999)
and state-dependent switchings (Johansson & Rantzer, 1998). One
of the main reasons behind their popularity is that (whenever
exists) such Lyapunov functions can be efficiently computed via
linear matrix inequalities. As such, providing sufficient conditions
for stability in terms of feasibility of a set of linear matrix
inequalities is highly popular in the literature of linear switching
systems (Camlibel, Pang, & Shen, 2007; Pavlov, Pogromsky, Van
De, & Nijmeijer, 2007). However, these conditions are rather
computational in nature and often do not relate to the underlying
structure of the system under study, in particular for the case of
state-dependent switchings.
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In this paper, we focus on a particular class of linear switching
systems with state-dependent switchings, namely piecewise
bimodal systems with a continuous vector field. In a way, these
systems form the simplest class of piecewise affine systems. The
main goal of the paper is to investigate the existence of a quadratic
Lyapunov function for such systems with an eye towards the
underlying geometric structure. It turns out that continuity of
the underlying vector field leads to an alternative linear matrix
inequality based condition for the existence of a commonquadratic
Lyapunov function. In turn this alternative condition enables us to
look at the feedback stabilization problem from a geometric point
of view. Indeed, one of the main results of the paper is to provide
sufficient conditions for the existence of a stabilizing static state
feedback for bimodal systems. These sufficient conditions are not
of linear matrix inequality type but rather geometric conditions
and involve the zero dynamics of one of the linear subsystems
(and hence also the other due to continuity). We also compare the
(open-loop) stabilizability conditions and those for the static state
feedback stabilization.

The paper is organized as follows. In Section 2, we first
introduce the class of bimodal systems as well as the quadratic
stability notion under study. Then, we provide necessary and
sufficient conditions for quadratic stability in terms of linear
matrix inequalities. Section 3 deals with the feedback stabilization
problem and provides necessary and sufficient conditions for the
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existence of a static state feedback rendering the closed-loop
system quadratically stable. After comparing the existing open-
loop stabilizability conditions and those presented for the feedback
stabilization, we provide a set of sufficient conditions for the
feedback stabilization in terms of the zero dynamics of one of the
linear subsystems. Finally, the paper closes with conclusions in
Section 4 and Appendix which presents a technical lemma and its
proof for the sake of completeness.

2. Quadratic stability of bimodal systems

Consider the bimodal piecewise affine system given by

ẋ(t) =


A1x(t) + f + bu(t) if cT x(t) 6 0
A2x(t) + f + bu(t) if cT x(t) > 0

(1)

where x ∈ Rn is the state, u ∈ R is the input and all vectors/
matrices involved are of appropriate dimensions. Throughout this
paper, we assume that the right-hand side is a continuous function
in x, or equivalently, there exists a vector e ∈ Rn such that

A1 − A2 = ecT . (2)

In this case, the right-hand side of (3) is a Lipschitz continuous
function. Hence, for each initial state x0 and locally-integrable in-
put u there exists a unique absolutely continuous function x such
that (3) holds for almost all t ∈ R and x(0) = x0.

Such bimodal systems can be encountered in a variety of
applications sometimes artificially as approximations of nonlinear
systems and sometimes naturally due to the intrinsic piecewise
affine behaviour. Next, we illustrate an example for the latter
case.

Example 1. As an example, consider the mechanical system
shown in Fig. 1. We assume that all the elements are linear. Let
x1 and x2 denote the displacements of the left and right cart from
the tip of the leftmost spring, respectively. Also let the masses of
the carts denoted bym1 (for the left one) andm2 (for the other), the
spring constants by k′ (for the leftmost one) and k (for the other),
and the damping constant by d. Then, the governing differential
equations can be given by

m1ẍ1 + k(x1 − x2) + d(ẋ1 − ẋ2) − k′ max(−x1, 0) = 0

m2ẍ2 + k(x1 − x2) + d(ẋ1 − ẋ2) = F

where F is the force that is applied to the right cart. By denoting
the velocities of the left and right cars, respectively, by x3 and x4,
one arrives at the following bimodal piecewise linear system

ẋ =


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y = x1

where x = col(x1, x2, x3, x4). Note that the condition (2) is satisfied
for e = col(0, 0, − k′

m1
, 0).

Fig. 1. Linear mechanical system with a one-sided spring.

More realistic applications of bimodal systems arising from one-
sided springs can be found in for instance (Doris et al., 2008, Section
3); (Doris, van de Wouw, Heemels, & Nijmeijer, 2010, Section
4). These papers deal with observer design and disturbance
attenuation problems, respectively, for a continuous bimodal
system arising as a mathematical model of two steel beams, one
supported at both ends by two leaf springs whereas the other
(which is located parallel to the first one) clamped at both ends
acting as a one-sided spring.

Other control systems applications in which bimodal systems
arise intrinsically include for instance (van der Heijden, Serrarens,
Camlibel, & Nijmeijer, 2007) where clutch engagement problem
has been studied and Vanek, Bokor, Balas, and Arndt (2007).

In addition to engineering applications, continuous bimodal
systems are also encountered in various other contexts. Examples
from the area of dynamical systems include Carmona, Fernandez-
Garcia, Fernandez-Sanchez, Garcia-Medina, and Teruel (2012),
Carmona, Fernandez-Garcia, and Freire (2011), Michelson (1986)
and Webster and Elgin (2003). In what follows, we illustrate a
bimodal system arising in the study of certain partial differential
equations.

Example 2. The so-calledMichelson systemwas originally studied
in Michelson (1986) in the context of the steady solutions of the
Kuramoto–Sivashinsky (partial differential) equations and further
studied in for instance (Carmona, Fernandez-Sanchez, & Teruel,
2008; Webster & Elgin, 2003). It can be given (after a suitable
similarity transformation) as a bimodal system of the form (1)
where

Ai =

0 −1 (−1)iλ(1 + λ2)
1 0 0
0 1 0

 for i ∈ {1, 2},

f T =

1 0 0


, cT =


0 0 1


,

and λ ∈ R is a constant. Note that the continuity assumption (2) is
satisfied with eT =


−2λ(1 + λ)2 0 0


.

Next, we focus on particular cases of (1) where f = b = 0, that
is continuous bimodal systems of the form:

ẋ(t) =


A1x(t) if cT x(t) 6 0
A2x(t) if cT x(t) > 0.

(3)

We say that the bimodal system (3) is quadratically stable if there
exists a quadratic Lyapunov function V : Rn

→ R such that
V (x) > 0 for all x ≠ 0 ∈ Rn and V̇ (x(t)) < 0 for all state
trajectories x of (3) with x(t) ≢ 0. Equivalently, the system (3) is
quadratically stable if and only if there exists a common quadratic
Lyapunov function for the linear subsystems, that is there exists a
symmetric positive definite matrix P such that

AT
i P + PAi < 0 (4)

with i ∈ {1, 2}.
Note that quadratic stability of systems of the form (3) naturally

yields (local) Lyapunov stability (see e.g. Khalil (2002)) of possibly
non-zero equilibrium points of bimodal systems of the form:

ẋ(t) =


A1x(t) + f if cT x(t) 6 0
A2x(t) + f if cT x(t) > 0.

(5)
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