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a b s t r a c t

Anomaly detection in large populations is a challenging but highly relevant problem. It is essentially a
multi-hypothesis problem,with a hypothesis for every division of the systems into normal and anomalous
systems. The number of hypothesis grows rapidly with the number of systems and approximate solutions
become a necessity for any problem of practical interest. In this paper we take an optimization approach
to this multi-hypothesis problem. It is first shown to be equivalent to a non-convex combinatorial
optimization problem and then is relaxed to a convex optimization problem that can be solved
distributively on the systems and that stays computationally tractable as the number of systems increase.
An interesting property of the proposed method is that it can under certain conditions be shown to give
exactly the same result as the combinatorial multi-hypothesis problem and the relaxation is hence tight.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study the following problem: we are given
N systems and we suspect that k ≪ N of them behave
differently from the majority. We do not know beforehand what
the normal behavior is, and we do not know which k systems
behave differently. This problem is known as an anomaly detection
problem and has been discussed e.g., in Chandola, Banerjee, and
Kumar (2009); Chu, Gorinevsky, and Boyd (2011); Gorinevsky,
Matthews, and Martin (2012). It clearly has links to change
detection (e.g., Basseville & Nikiforov, 1993, Gustafsson, 2001 and
Patton, Frank, & Clark, 1989) but is different because the detection
of anomalies is done by comparing systems rather than looking for
changes over time.

The anomaly detection problem typically becomes very com-
putationally demanding, and it is therefore of interest to study dis-
tributed solutions. A distributed solution is also motivated by that
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many anomaly detection problems are spatially distributed and
lack a central computational unit.

Example 1 (Aircraft Anomaly Detection). In this example we
consider the problem of detecting abnormally behaving airplanes
in a large homogeneous fleet of aircrafts. Homogeneous here
means that the normal aircrafts have similar dynamics. This is a
very relevant problem (Chu et al., 2011; Gorinevsky et al., 2012)
and of highest interest for safety in aeronautics. In fact, airplanes
are constantly gathering data and being monitored for this exact
reason. In particular, so called flight operations quality assurance
(FOQA) data are collected by several airlines and used to improve
their fleet’s safety.

As showed in Chu et al. (2011), faults in the angle-of-attack
channel can be detected by studying the relation between the
angle of attack, the dynamic pressure,mass variation, the stabilizer
deflection angle, and the elevator deflection. The number of
airplanes in a fleetmight be of the order of hundreds and data from
a couple of thousand flights might be available (200 airplanes and
data from 5000 flights were used in Chu et al., 2011). Say that our
goal is to find the 3 airplanes among 200 airplanes that are themost
likely to be anomalous to narrow the airplanes that need manual
inspection. Then, we would have to evaluate roughly 1.3 × 106

hypothesis (the number of unordered selections of 3 out of 200
airplanes). For each hypothesis, the likelihood for the observed
data would then be maximized with respect to the unknown
parameters and themost likely hypothesis accepted. This is clearly
a very computationally challenging problem.
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Example 1 considers anomaly detection in a large homogeneous
population and is the type of problem we are interested in solving
in this paper. The problem has previously been approached using
model based anomaly detection methods, see e.g., Chandola et al.
(2009); Chu et al. (2011) and Gorinevsky et al. (2012). This class
of anomaly detection methods is suitable to detect anomalies
in systems, as opposed to non-model based methods that are
more suitable for finding anomalies in data. Model based anomaly
detection methods work under the assumption that the dynamics
of normal systems is the same, or equivalently, that the population
of systems is homogeneous. The normal dynamics ismodeled from
system observations and most papers assume that an abnormal-
free training data set is available for the estimation, see for instance
(Abraham & Box, 1979; Abraham & Chuang, 1989; Fox, 1972).
Some papers have been presented to relax this assumption. In
e.g., Rousseeuw and Leroy (1987), the use of a regression technique
robust to anomalies was suggested.

The detection of anomalous systems is in model based anomaly
detection done by comparing system observations and model
predictions and often done by a statistical test, see e.g., Desforges,
Jacob, and Cooper (1998) and Eskin (2000). However, in non-model
based anomaly detection, classification based (Duda, Hart, & Stork,
2000; Tan, Steinbach, & Kumar, 2005), clustering based (Jain &
Dubes, 1988), nearest neighbor based (Tan et al., 2005, Chapter
2), information theoretic (Arning, Agrawal, & Raghavan, 1996)
and spectral methods (Parra, Deco, & Miesbach, 1996) are also
common. See Chandola et al. (2009) for a detailed review of
anomaly detection methods. Most interesting and similar to the
proposed method is the more recent approach taken in Chu
et al. (2011) and Gorinevsky et al. (2012). They simultaneously
estimate the regression model for the normal dynamics and
perform anomaly detection. The method of Chu et al. (2011) is
discussed further in the numerical section. There has also been
somework on distributed anomaly detection, e.g., Chatzigiannakis,
Papavassiliou, Grammatikou, andMaglaris (2006), Chu et al. (2011)
and Zimmermann and Mohay (2006).

The main contribution of the paper is a novel distributed,
scalable and model based method for anomaly detection in large
homogeneous populations. The method is distributed in the sense
that the computations can be distributed over the systems in the
population or a cluster of computers. It is scalable since the size of
the optimization problem solved on each system is independent
of the number of systems in the population. This is made possible
by a novel formulation of the multi-hypothesis problem as a
sparse problem. The method also shows superior performance
and is easier to tune than previously proposed model based
anomaly detection methods. Lastly, the method does not need a
training data set and a regression model of the normal dynamics is
estimated at the same time as abnormal systems are detected. This
is particularly valuable since often neither a training data set nor a
regression model for the normal dynamics is available.

The remainder of the paper is organized as follows. Section 2
states the problem and shows the relation between anomaly
detection andmulti-hypothesis testing. Section 3 reformulates the
multi-hypothesis problem as a sparse optimization problem and
Section 4 gives a convex formulation. The convex problem is solved
in a distributed manner on the systems and this is discussed in
Section 5. We return to Example 1 and compare to the method of
Chu et al. (2011) in Section 6. Finally, we conclude the paper in
Section 7.

2. Problem statement and formulation

Assume that the population of interest consists of N systems.
Think for example of the N airplanes studied in Example 1. Further
assume that there is a linear unknown relation describing the

relation betweenmeasurable quantities of interest (angle of attack,
the dynamic pressure, mass variation, the stabilizer deflection
angle, and the elevator deflection in Example 1):

yi(t) = ϕT
i (t)θi,0 + ei(t), i = 1, . . . ,N, (1)

where t is the time index, i indexing systems, yi(t) ∈ R and
ϕi(t) ∈ Rm are the measurement and regressor vector at time t ,
respectively, θi,0 is the unknown model parameter, and ei(t) ∈ R
is the measurement noise. For the ith system, i = 1, . . . ,N , let
{(yi(t), ϕi(t))}Ω

t=1 denote the collected data set and Ω the number
of observations collected on each system. We assume that ei(t)
is white Gaussian distributed with mean zero and some unknown
variance σ 2 and moreover, independent of ej(t) for all i ≠ j.
However, log-concave distributed noise could be handled with
minor changes.

We will in the following say that the population behaves nor-
mally and that none of the systems are abnormal if θ1,0 = · · · =

θN,0 = θ0. Conversely, if any system has a model parameter devi-
ating from the nominal parameter value θ0, we will consider that
system as abnormal.

To solve the problemwe could argue like this: suppose we have
a hypothesis about which k systems are the anomalies. Then we
could estimate the nominal parameters θ0 by least squares from
the rest, and estimate individual θi for the k anomalies. Sincewe do
not know which systems are the anomalies, we have to do this for
all possible hypotheses: choosing k systems from a set of N leads
to a total of

c(N, k) = N!/

(N − k)!k!


(2)

possible hypotheses. To decidewhich is themost likely hypothesis,
we would evaluate the total misfit for all the systems, and choose
that combination that gives the smallest total misfit. If we let γj
be the set of assumed abnormal systems associated with the jth
hypothesis j = 1, . . . , c(N, k), this would be equivalent to solving
the non-convex optimization problem

minimize
j=1,...,c(N,k)


s∈γj

min
θj,s


t=1,...,Ω

∥ys(t) − ϕT
s (t)θj,s∥

2

+ min
θj,0


s∉γj,t=1,...,Ω

∥ys(t) − ϕT
s (t)θj,0∥

2. (3)

Since we assume that all systems have the same noise variance σ 2,
this is a formal hypothesis test. If the systems may have different
noise levels we would have to estimate these and include proper
weighting in (3).

The difficulty is how to solve (3) when the number of systems
N is large. As seen in Example 1, even for rather small examples
(k = 3, N = 200), the number of hypothesis c(N, k) becomes large
and solving problem (3) becomes computationally intractable.

3. Sparse optimization formulation

A key observation to be able to solve the anomaly detection
problem in a computationally efficient manner is the reformula-
tion of the multi-hypothesis problem (3) as a sparse optimization
problem. To do this, first notice that the multi-hypothesis test (3)
will find the k systemswhose data aremost likely to not have been
generated from the same model as the remaining N − k systems.
Let us say that j∗ was the selected hypothesis and denote the pa-
rameter of the ith system by θi, i = 1, . . . ,N . Then θi1 ≠ θi2 for
all i1, i2 ∈ γj∗ and θi1 = θi2 for all i1, i2 ∈ {1, . . . ,N}/γj∗ . Note that
N − k systems will have identical parameters. An equivalent way
of solving the multi-hypothesis problem is therefore to maximize
the likelihood under the constraint thatN−k systems are identical.
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