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a b s t r a c t

This work focuses on substituting a computationally expensive simulator by a cheap emulator to enable
studying applications where running the simulator is prohibitively expensive. The procedure consists of
two steps. In a first step, the emulator is calibrated to closely mimic the simulator response for a number
of pre-defined cases. In a second step the calibrated emulator is used as surrogate for the simulator in the
otherwise prohibitively expensive application. An appealing feature of the proposed framework contrary
to other approaches is that the uncertainty on the emulator prediction can be determined. While the
proposed framework is applicable in virtually all areas of natural sciences, we discuss the approach and
evaluate its performance based on a typical example in the realm of computational wind engineering,
namely the determination of the wind field in an urban area.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In virtually all areas of natural sciences, we encounter a rapid
increase in model sophistication, directed at predicting the
behavior of progressively larger and more complex systems. Prime
examples related to fluid dynamics areweather forecasting, climate
change assessment and reservoir management. State-of-the-art
models or simulators thus have a tremendous potential, yet this
potential cannot always be fully exploited due to the associated
computational cost. Attempts to reduce the computational cost of
the simulator by reducing the spatial or temporal resolution, the
spatial or temporal extent of the study, or the involved physics lead
inevitably to concessions in terms of accuracy or representative-
ness. A statistical emulator can provide results of similar accuracy
as the original simulator, yet at a much lower computational cost,
and provides uncertainty estimates on these predictions.

Essentially, an emulator is a cheap model, which mimics the
output of a more demanding model. Statistical emulators, also
known as surrogate models or meta-models, date back to the work
on Design and Analysis of Computer Experiments in the 1980s
(O'Hagan, 2006). The central idea is to build a simple statistical
approximation of the simulator, which maps the simulator inputs
on values which are sufficiently close to the simulator outputs.

Provided that the emulator is simpler than the original simulator e
and thus faster e the emulator can be used in cases where running
the simulator would be unfeasible. Moreover, by rooting the
emulator on a statistical basis, its output is a probability distribu-
tion. This distribution approximates the distribution obtained by a
Monte-Carlo analysis with the original simulator. Obtaining the
latter is nevertheless often prohibitively expensive.

There are several ways to construct an emulator. The principal
tool in the statistical community is based on Gaussian Processes,
while the applied mathematics community relies on Polynomial
Chaos expansions. As indicated by O'Hagan (2013), Gaussian Pro-
cesses offer advantages over Polynomial Chaos expansions in terms
of efficiency and flexibility, which is the main reason why we will
employ the former approach in this paper. The main limitation of
Gaussian Processes in their standard form is related to their (in)
ability to handle large datasets. Among the large number of
workarounds which have been proposed (e.g. Csat�o and Opper,
2002; Rougier et al., 2009a; Snelson, 2007 and the references
cited herein), we opt for an approach based on dimensional
reduction (Higdon et al., 2008) which allows for highly multivariate
output while maintaining computational tractability. We remark
that Gaussian Processes are closely related to the limit case of large
neural networks, and that the method is equivalent to kriging, a
technique popular in geostatics, and Kalman filters, popular in
speech analysis (MacKay, 1998).

Statistical emulators are well known and extensively used in
many fields, including porous media (e.g. Lee et al., 2002; Li and
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Zhang, 2007; Rajabi et al., 2015), water resources (e.g. Galelli and
Soncini-Sessa, 2010; Razavi et al., 2012; Laloy et al., 2013; Wang
et al., 2014; Tsoukalas and Makropoulos, 2015), environmental
engineering (Ord�o~nez et al., 2012; Parry et al., 2013; Margvelashvili
et al., 2013; Petropoulos et al., 2013), petroleum engineering (e.g.
Hegstad and Omre, 2001; Craig et al., 2001), atmospheric disper-
sion (e.g. Politis and Robertson, 2004; Konda et al., 2010; Reggente
et al., 2014) and climatology (Rougier et al., 2009b; Qin et al., 2013;
Castruccio et al., 2014; Plouffe et al., 2015). In contrast, statistical
emulation is relatively unknown to the computational wind engi-
neering (CWE) community. The few published studies do however
illustrate the wide range of potential applications. Bayesian cali-
bration was for instance used to assess the impact of the model
constants of the k-ε turbulencemodel on the flow in a street canyon
(Guillas et al., 2014) and on flat-plate boundary-layers (Edeling
et al., 2014). Polynomial Chaos Expansions were used to model
uncertainties in CFD calculations (Knio and Le Maître, 2006; Xiu
and Karniadakis, 2003). Neural networks were successfully
employed to predict speed-up ratios for wind speeds over different
topographies including hills, valleys and escarpments (Bitsuamlak
et al., 2007). On a larger scale, Tsegas et al. (2011) demonstrated
that meta-modeling enables a two-way coupling between meso-
scale and microscale Computational Fluid Dynamics (CFD) simu-
lations. Also coupling between different types of models can be
established. Yi and Malkawi (2011) for instance used a neural
network, trained based on CFD simulations, to enhance building
energy simulations by incorporating site-specific wind conditions.
Goethals et al. (2012) investigated based on surrogatemodeling the
sensitivity of night cooling performance to room and system
design. Finally, Tagade et al. (2013) conducted multizone-CFD
simulations to train a Gaussian process emulator, and used the
emulator to rapidly localize and characterize multiple sources after
contaminant detection by sensors.

From the preceding literature overview, it is clear that the
concept “model emulation” has enabled a wide scope of otherwise
unfeasible studies, ranging from sensitivity analysis and uncer-
tainty assessment, over multi-scale modeling and model coupling,
up to system design and inverse identification. Applications in
other fields suggest that experimental model validation (e.g.
Bayarri et al., 2007), the identification of systematic model bias (e.g.
Williams et al., 2006; Dietzel and Reichert, 2012; Del Giudice et al.,
2015) and objective selection of the “best” model (e.g. Dettmer
et al., 2010; Del Giudice et al., 2015) can be added to this list. The
large potential of Bayesian methods for the CWE community is
however contrasted by their limited application. In part, this can be
attributed to the fact that the sizeable literature on the topic is
published in specialist statistical journals. This paper aims to
introduce model emulation to the CWE community at a general
level, and to provide the entry points to the more specialized
literature for the interested reader. To avoid abstraction, the paper
is structured around a typical CFD example, namely the determi-
nation of the wind field in an urban area. Section 2 describes the
classical CFD approach, starting from deciding on the size of the
computational domain and assigning the boundary conditions,
over finding a suitable discretization, up to the selection of the
model and the algorithms to be used. In Section 3, the same case is
treated from the point of viewmodel emulation. The different steps
in the process are discussed, choices are proposed and motivated,
and alternatives are suggested. The performance of the approach is
assessed in several steps, ranging from a qualitative comparison of
simulated and emulated wind fields, over statistical data analysis
by means of scatter plots and validation metrics (Section 4). In
Section 5, we analyze how the performance of the emulator
approach depends on the choices made when building the
emulator (i.e. the choices outlined in Section 3) and we

demonstrate that these choices were not ad hoc. Section 6 gives a
glance at the type of applications which can be tackled using em-
ulators. A discussion and conclusions round up the paper.

2. Simulator approach

This paper aims at demonstrating the large potential of model
emulation for the fluid dynamics community. Rather than a theo-
retical treatment, we opt to introduce the technique based on a
typical application in the field of wind engineering. More precisely,
we focus on the determination of the local wind conditions in an
urban area as function of the wind conditions at a nearby meteo-
rological station. Possible applications are e.g. assessment of the
local wind comfort, determination of the wind loads on a structure,
or estimation of the natural ventilation potential of a building. In
the current section, we discuss how such questions can be
adequately answered using a simulator approach, i.e. by means of
CFD. The subsequent section then discusses the same problem
statement using an emulator approach and it will be shown that
this approach can significantly reduce the analysis time in case
many simulator runs are required.

2.1. Urban configuration

As an illustrative example we focus on the idealized urban area
depicted in Fig. 1. The urban area consists of a number of stand-
alone cubical buildings with height H ¼ 10 m, regularly distrib-
uted around a short street canyon. In view of wind comfort
assessment, we could be interested in the wind conditions at 2 m
height as function of the wind speed and direction at a nearby
meteorological station. Although the wind direction can vary
continuously, it is common to divide the full range of wind di-
rections into 12 bins of 30� and to solely perform a simulation for
the center value of each of these bins. Making use of the double
symmetry of the urban layout, the number of directions-to-be-
considered can be further reduced to 4 for the case at hand (0,
30, 60 and 90�). The wind speed at the location of interest (U) is
strongly related to the wind speed at a nearby meteorological
station (Upot). The ratio of both is termed the total wind amplifi-
cation factor or normalized wind speed g:

g ¼ U
Upot

(1)

The amplification factor can be considered independent from
the actual wind speed, as long as Reynoldseindependence holds,
i.e. when the wind speed is sufficiently high and other effects, such
as thermal convection, are comparatively small.

2.2. Computational domain and boundary conditions

We opt for a hexahedral computational domain. Governing best
practice guidelines for the use of CFD in wind engineering specify
that the distance between the building group (7H � 7H) and the
inlet surface should be at least 5H, with H the characteristic height
of the buildings (COST 732, 2007; Tominaga et al., 2008; Franke
et al., 2011). The outlet surface should be positioned at least at
10H downstream of the building group. As the wind will enter the
domain in the quadrant 0�e90�, these guidelines have to be applied
in both the 0� and the 90� direction, resulting in a square footprint
of the domain of with an edge length of 5H þ 7H þ 10H ¼ 22H. In
vertical direction, a dimension of 10H is chosen to minimize the
blockage ratio and to avoid artificial speed-up.

At the both inflow surfaces of the computational domain vertical
profiles of themean horizontal wind speed (U in m/s), the turbulent
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