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a b s t r a c t

Inverse modeling is an essential step for reliable modeling of subsurface flow and transport, which is
important for groundwater resource management and aquifer remediation. Multiple-point statistics
(MPS) based reservoir modeling algorithms, beyond traditional two-point statistics-based methods, offer
an alternative to simulate complex geological features and patterns, conditioning to observed conduc-
tivity data. Parameter estimation, within the framework of MPS, for the characterization of conductivity
fields using measured dynamic data such as piezometric head data, remains one of the most challenging
tasks in geologic modeling. We propose a new localeglobal pattern matching method to integrate dy-
namic data into geological models. The local pattern is composed of conductivity and head values that
are sampled from joint training images comprising of geological models and the corresponding simu-
lated piezometric heads. Subsequently, a global constraint is enforced on the simulated geologic models
in order to match the measured head data. The method is sequential in time, and as new piezometric
head become available, the training images are updated for the purpose of reducing the computational
cost of pattern matching. As a result, the final suite of models preserve the geologic features as well as
match the dynamic data. This localeglobal pattern matching method is demonstrated for simulating a
two-dimensional, bimodally-distributed heterogeneous conductivity field. The results indicate that the
characterization of conductivity as well as flow and transport predictions are improved when the
piezometric head data are integrated into the geological modeling.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse modeling is a mathematical approach to identify
parameters such as permeability or hydraulic conductivity at
unsampled locations such that flow and transport modeling using
the estimated parameters match observed state variables such as
piezometric head or concentration data. Predictions for ground-
water flow and solute transport made using the estimated param-
eters would then be more accurate. The fact that the number of
observed state variables is much smaller than the number of
unknown parameters implies that the solution of inverse problem
will be non-unique (Carrera and Neuman, 1986) especially when
heterogeneous subsurface systems are considered. In order to

represent this non-uniqueness, stochastic inverse modeling seeks to
generate multiple likely representations of parameter fields that are
all conditioned to both direct measurements of the parameters at
specific locations and dynamic data (G�omez-Hern�andez et al., 1997).
The multiple calibrated models obtained by applying stochastic
inversion methods could be used to assess the uncertainty in pre-
dictions based on the available data. Reliable models for uncertainty
are required by decision-makers. For a review of the evolution and
recent trends of inverse methods in hydrogeology, the reader is
referred to Zhou et al. (2014).

In cross-bedded aquifers or fluvial geologies, aquifer properties
such as hydraulic conductivity exhibit connectivity along curvilinear
paths. This complex connectivity significantly affects the flow and
transport of fluids and chemical species (G�omez-Hern�andez and
Wen, 1998; Renard and Allard, 2011). Reproduction of the curvi-
linear geometry can be achieved using Multiple-Point Statistics
(MPS) based stochastic simulation methods (Strebelle, 2002). MPS
simulation was developed to overcome the limitation of traditional
two-point variogram-based methods, which cannot capture strong
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connectivities in the subsurface aquifer. The higher moments (i.e.,
multiple-point statistics) are introduced into the simulation by
borrowing patterns from a training image (Guardiano and Srivastava,
1993). Although MPS provides an avenue to simulate complex for-
mations, stochastic inverse modeling within the framework of MPS
simulations is extremely challenging because of the difficulty in
maintaining the complex curvilinear connectivity geological struc-
tures while simultaneously honoring dynamic data that are related
to conductivity through a strongly non-linear transfer function.

In the literature, stochastic inverse methods can be classified
into two groups. In the first group, an objective function is first
constructed based on the discrepancy between observed data and
simulated values. This objective function is subsequently mini-
mized by iteratively perturbing the parameter values until a suffi-
ciently close match is attained. Preservation of the prior geological
structures is not explicitly considered during this process of opti-
mization. Examples of this data-driven stochastic inverse method
are sequential self-calibration (G�omez-Hern�andez et al., 1997;
Hendricks Franssen et al., 2003), the pilot-point method (de
Marsily, 1978) and the ensemble Kalman filter (EnKF) (Evensen,
2003). It has been proven that these methods yield optimal esti-
mates for multiGaussian conductivity fields. Some variants were
proposed to handle non-multiGaussian conductivity fields. For
example, Capilla et al. (1999) proposed the application of self-
calibration method to local conditional probabilities defining the
uncertainty in conductivity, instead of calibrating the conductiv-
ities directly. Later, Capilla and Llopis-Albert (2009) coupled the
gradual deformation method and the optimization of the proba-
bility fields in order to improve the efficiency of the previous pro-
posal. In a similar way, Hu et al. (2013) proposed to consider the
uniform random number used to draw the MPS realizations as part
of the state variable set in EnKF. Sun et al. (2009) coupled Gaussian
mixture models and EnKF to handle non-Gaussian conductivity
fields. Jafarpour and Khodabakhshi (2011) proposed to first update
the ensemble of MPS-generated conductivities to derive local
probabilities, and then, to re-simulate the conductivities using the
probability maps as soft data. Zhou et al. (2011) developed a
normal-score EnKF to handle non-Gaussianity within the ensemble
Kalman filtering framework.

In the second group of inverse modeling approaches, data
integration is achieved using Bayes' theorem. The posterior models
are sampled from the prior models by assessing first a likelihood
function. A typical example of this model-driven stochastic inverse
method is rejection sampling (Tarantola, 2005). The likelihood of a
model sampled from a prior set is assessed, and the model is
rejected depending on a likelihood threshold. The prior geological
structures will be preserved in this process, because the posterior
set of models is simply a subset of the prior set. However, like the
particle filtering approach, this method is computationally expen-
sive and is inapplicable in most practical cases because tens of
thousands of models need to be evaluated. To improve the
computational efficiency, Mariethoz et al. (2010a) proposed an
iterative spatial resampling method in which the candidate models
are generated by conditioning to data sampled from previous
accepted models, thus resulting in less computational cost because
of faster convergence to a posterior set that exhibits the desired
dynamic characteristics. Another popular Bayesian approach to
inverse modeling is the Markov chain Monte Carlo method (McMC)
(Metropolis et al., 1953; Oliver et al., 1997) in which the parameter
model is first locally perturbed for a gridblock or for a set of grid-
blocks (i.e., the transition kernel) and then the forecast model is run
to judge whether the new candidate model will be accepted (e.g.,
the MetropoliseHastings rule). The problems with these McMC
methods are: (1) the acceptance rate of new models is dependent
on the transition kernel used; (2) a long chain is usually required

before the posterior distribution can be correctly sampled, and (3)
a large number of perturbed models have to be generated and
evaluated. An extensive description of the mathematical frame-
work for the McMC method and recent advances can be found in
the review paper by Liu et al. (2010).

The Ensemble PATtern matching (EnPAT) stochastic inverse
method was first proposed by Zhou et al. (2012) with the aim to
create multiple conductivity fields honoring both measured con-
ductivity and piezometric head data as well as the prior geological
structures. The EnPAT is inspired by the Direct Sampling (DS) MPS
method developed by Mariethoz et al. (2010b). In DS, the con-
ductivity patterns are directly sampled from a training image
without storing the entire pattern database in memory. This results
in fast simulation and the possibility to simulate continuous
variables such as hydraulic conductivity. Zhou et al. (2012) borrows
the concept of DS and expands the conductivity pattern to include
the pattern of piezometric heads for the purpose of inverse
modeling. Correspondingly, multiple MPS-simulated conductivity
models and the corresponding head models obtained by running
the forward simulator are jointly used as the training images
for learning during the simulation. Conductivities are simulated
by matching joint patterns from the training image sets. As a
result, the simulated conductivity models are not only conditioned
to the measured conductivity and piezometric data, but also pre-
serve the prior geological structures. Li et al. (2013a) developed a
hybrid of the EnPAT and the pilot point/self-calibration method
(G�omez-Hern�andez et al., 1997) to reduce the computational cost
and to improve the characterization of conductivity connectivity
during the dynamic data assimilation process.

In this paper, we propose a localeglobal pattern matching
method to integrate dynamic data into geologic models. In the pre-
vious implementation of the EnPAT, a local pattern is considered for
ensemble matching, but that does not guarantee that the updated
model matches the observed global dynamic data because of the
non-linearity of the forecast function as well as the existence of
complex boundary conditions. To address this issue, we implement
an additional step in which we simulate the global response of the
updated models and select those that best fit the observed data after
the process of local pattern matching. As a consequence, updated
models will preserve the geological structures and the dynamic data,
although at a computational cost because of the additional forward
simulations in the rejected models. In order to mitigate the
computational demand and to accelerate the learning process, the
training image sets are refined by progressively replacing the worst
models in the prior training set with the newly acceptedmodels. The
method therefore borrows the concept of iterative resampling pro-
posed by Mariethoz et al. (2010a). A ranking scheme is implemented
to identify the poor initial models. The proposed methodology is
demonstrated on a synthetic example for which predictions of flow
and transport are considered.

The remainder of the paper will be organized as follows. In
Section 2, the implementation of the ensemble pattern matching
method is described, with emphasis on the significance of global
constraints on the predictions of flow and transport. In Section 3, a
synthetic example is used to demonstrate the effectiveness of the
proposed method. Then, in Section 4, we discussed the computa-
tional efficiency of the EnPAT by continuously refining the training
images. In Section 5, there is a general discussion. The paper ends
with a summary and conclusions.

2. Methodology

In the EnPAT method two steps are performed at each time step: the forecast
step (i.e., solving the flow equation based on the current hydraulic conductivities to
derive the piezometric head) and updating step (i.e., updating both conductivity
and head through a pattern matching approach).
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