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a b s t r a c t

The paper presents a methodology for an optimal input design for model discrimination. To allow
analytical solutions, the method, using Pontryagin’s maximum principle, is developed for non-linear
single-state systems that are affine in their joint input. Themethod is demonstrated on a fed-batch reactor
case study with first-order and Monod kinetics.
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1. Introduction

Before attempting to estimate the parameters of a givenmodel,
one may have to choose the proper model structure among a
set of candidates, which may correspond, for instance, to com-
peting scientific hypotheses about the description of some phe-
nomenon (see, e.g., some of the practical examples in Keesman
(2011)). The procedure of choosing between model structures
is called model discrimination. For it to be possible on the basis
of (future) experimental data, these models must be distinguish-
able. The distinguishability property can be tested by techniques
similar to those used to test models for identifiability (although
identifiability of two structures is neither necessary nor sufficient
for their distinguishability); see Walter, Lecourtier, and Happel
(1984). In practice, of course, the ability to discriminate distin-
guishable model structures depends on the informational content
of the data collected. Optimal experiment design for model dis-
crimination has received some attention in the statistical literature
(see, e.g., Atkinson & Cox, 1974; Box & Hill, 1967; Dette & Titoff,
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2009), although less than optimal experiment design for parameter
estimation did. Applications of experiment design for discrimina-
tion can be found in domains as diverse as chemistry Schwaab
et al. (2006), machine learning Rajamoney (1993), system biology
Kreutz and Timmer (2009), Skanda and Lebiedz (2010) and psy-
chology Myung and Pitt (2009).

For optimal design to be possible, some performance index is
needed. T-optimal design, as in Atkinson and Fedorov (1975), aims
at maximizing some measure of the lack of fit between the out-
put of some model assumed to be true and that of an alternative
structure. Ponce de Leon and Atkinson (1991) extend T-optimality
to the case where prior probabilities are specified for each of the
models to be true, as well as prior distributions for the parame-
ters of these models. KL-optimal design, see Lopez-Fidalgo, Tom-
masi, and Trandafir (2007) and Skanda and Lebiedz (2010), based
on the Kullback–Leibler divergence, can be seen as a generalization
of T-optimal design of interest under non-normal assumptions.
Ds-optimal design, as in Studden (1980), applies to the discrimina-
tion between two structures with a common part, by attempting
to maximize some measure of the precision with which structure-
specific parameters are estimated. For an extension to more than
two rival structures, see Atkinson and Cox (1974). Entropy-based
design, as in Box and Hill (1967) and Reilly (1970), assumes that
each of the competing structures is given a prior probability and
updates the probabilities of the structures after eachmeasurement.
The new experiment is then designed to maximize some measure
of the decrease in Shannon’s entropy to be expected from the next
measurement (entropy is minimal when a single model structure
has gained all the probability mass).
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Although the proposed method, based on Pontryagin’s maxi-
mum principle (PMP), may seem to be rather limited at first sight,
we think it is nevertheless valuable to study closed form analytical
solutions, as these solutions provide direct insight in terms of pos-
sible singularities, steady states, parameter sensitivities, etc. We
demonstrate themethod in a case study using kinetic model struc-
tures. Typically, in bio-reactor modeling, a specific kinetic model
structure will appear in different equations, as in e.g. oxygen, sub-
strate and biomass balances. In each of the balances the kinetic
model will only be corrected by a so-called yield coefficient, ex-
pressing the stoichiometric relationship between the components
(see e.g. Bastin & Dochain, 1990). Also, in basic physical modeling
with its mass balances in the PDE form, we distinguish storage and
transport terms from the reaction term. Under the assumption that
the reaction term does not depend on the other terms, we can in-
vestigate all kinds of kinetic models separately. Thus, instead of
discriminating potential multi-state models for the whole reactor
system, we can focus on a single-state system that only contains
the kinetic model.

2. Preliminaries

In the paper, as already motivated in the previous paragraph,
and for the purpose of introducing the idea of optimal input
design formodel discriminationusing analytical solutions,we limit
ourselves to the case of two non-linear scalar state equations that
are affine in their joint input. Hence, without explicitly referring to
the parameter vectors to simplify notation, two competitivemodel
structures are defined by the following state equations

ẋ1(t) = f1(x1(t)) + b1u(t) (1)
ẋ2(t) = f2(x2(t)) + b2u(t) (2)

with x1(t) and x2(t) being scalar states, u(t) the joint control input,
and f1(·), f2(·) non-linear functions. In what follows, it is assumed
that f1(x1(t)), f2(x2(t)) ∈ R2

[(−∞, ∞)]. For the readability of the
solutions only, it is further assumed that the states are directly
observed so that yi(t) = xi(t) for i = 1, 2. Hence, it suffices
to derive a control law in terms of xi(t). Since our aim is to
optimally discriminate between models from new experiments, it
is intuitively appealing to focus on the normof the difference of the
predicted output signals. Here, our concern is to find a control law
that optimally discriminates between competitive, single-input—
single-state models. A similar approach to the OID problem, but
then for parameter estimation using PMP, is presented by Keesman
and Stigter (2002) and Stigter and Keesman (2004).

3. Optimal input design

3.1. Singular control using squared 2-norm of the differences and
linear input costs

Let us start from the general systemdescription given in (1)–(2).
As a measure of optimality, the following utility function, which
includes the linear costs of the control input, is introduced:

J =

 tf

t=0
(x1(τ ) − x2(τ ))2 − ρu(τ )dτ (3)

under the dynamic constraints given by (1)–(2) and the (practical)
input constraints:

umin ≤ u(t) ≤ umax, ∀t ≥ 0 (4)

with, in what follows, umin = 0 and umax being the maximum
allowed value, frequently determined by the equipment. Conse-
quently, theOID problem leads to a constrained optimization prob-
lem, where our goal is to maximize (3).

For finding analytical solutions to the problem, define the
Hamiltonian

H(x(t), λ(t)) , − (x1(t) − x2(t))2 + ρu(t) +

2
i=1

λi(t)ẋi(t) (5)

where λi(t), i = 1, 2, are the co-states. The last term on the
right-hand side of (5) is included to fulfil the dynamic constraints,
given by (1)–(2) (see e.g. Stengel (1994) for details). Let U be the
admissible set of input trajectories defined by (4). Pontryagin’s
maximum principle states that the input u(t) ∈ U that minimizes
H is optimal and thus in this case maximizes J .

The following holds (see, e.g., Bryson, 1999):

λ̇1(t) = −
∂H

∂x1
= 2x1(t) − 2x2(t) − ḟ1λ1(t) (6)

λ̇2(t) = −
∂H

∂x2
= −2x1(t) + 2x2(t) − ḟ2λ2(t) (7)

where, for simplicity of notation, fi(xi(t)) and its derivatives dfi(xi)
dxi

are denoted as fi, ḟi, etc.
Since H does not explicitly depend on time, a first integral of

the problem is H = c with c being a real constant. Also, since the
final time tf is assumed to be unknown and no terminal conditions
are specified (determining the value of the co-states at tf ), this
constant can be assumed equal to zero. Furthermore, since the
problem is affine in the bounded control variable u(t) (4), three
types of constraints on the optimal control can be found

u(t) = umax if sf < 0
0 ≤ u(t) ≤ umax if sf = 0

u(t) = 0 if sf > 0 (8)

where sf = ∂H/∂u is the so-called switching function. The case
sf = 0 corresponds to a singular arc. A singular controller that
minimizes the Hamiltonian H over all possible input sequences
u(t) can be derived by setting

∀i ∈ {0, 1, 2, . . .} :
di

dt i
∂H

∂u
= 0. (9)

Hence, the singular control law is derived by solving a set of
algebraic equations, generated through repeated differentiation
of the Pontryagin optimality condition ∂H

∂u ≡ 0 on the compact
interval [t1, t2]. In order to determine the optimal input u(t) in
(1)–(2) explicitly two differentiations are needed, presuming that
u appears in one of the equations of (9). For i = 0, and thus for
∂H/∂u = sf = 0, we get sf = ρ + b1λ1(t) + b2λ2(t) = 0.
Hence, λ1(t) = −

ρ+b2λ2(t)
b1

, and the conditionH ≡ 0 gives λ2(t) =

(ρf1 + b1(x1 − x2)2)/(−b2f1 + b1f2). Subsequent differentiation of
the condition ∂H

∂u = 0, assuming that the condition holds on an
interval, yields for i = 1 and using (6)–(7) the so-called singularity
condition:

φ(t) = [b1(f2(2(b1 − b2)x1 − 2(b1 − b2)x2 + ρ ḟ1)
+ b2(x1 − x2)2(ḟ1 − ḟ2)) − b2f1(2(b1 − b2)x1

− 2(b1 − b2)x2 + ρ ḟ2)]/[−b2f1 + b1f2] = 0 (10)

with −b2f1 + b1f2 ≠ 0. The corresponding singular control law,
found from (9) for i = 2, is given by

u∗(t) =


2b2(−b1 + b2)f 21 ḟ2 − b1 ḟ1(2(b1 − b2)f 22

+ b2(x1 − x2)2(ḟ1 − ḟ2)ḟ2 + b2f2(x1 − x2)
∗ (2ḟ1 − 2ḟ2 + (x1 − x2)f̈2)) + f1(b1b2(x1 − x2)
∗ ḟ2(2ḟ1 − 2ḟ2 + (x1 − x2)f̈1) + 2(b1 − b2)



Download	English	Version:

https://daneshyari.com/en/article/696312

Download	Persian	Version:

https://daneshyari.com/article/696312

Daneshyari.com

https://daneshyari.com/en/article/696312
https://daneshyari.com/article/696312
https://daneshyari.com/

