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In this study, spatial clustering techniques were used in combination with Structural Equation Modeling
(SEM) to characterize the relationships between in-stream health indicators and socioeconomic mea-
sures of communities. The study area is the Saginaw River Watershed in Michigan. Four measures of
stream health were considered: the Index of Biological Integrity, Hilsenhoff Biotic Index, Family Index of
Biological Integrity, and number of Ephemeroptera, Plecoptera, and Trichoptera taxa. The stream health
indicators were predicted using nine socioeconomic variables that capture vulnerability in population.
The results of spatial clustering showed that incorporating clustering configuration improves the model
prediction. A total of 510 Confirmatory Factor Analysis (CFAs) and 85 multivariate regression models
were developed for each spatial cluster within the watershed and compared with the model perfor-
mance without spatial clustering (at the watershed level). In general, watershed level CFAs outperformed
cluster level CFAs, while the reverse was true for the regression models.
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1. Introduction

Food, water, clean air, shelter, and relative climatic constancy are
provided by ecosystem services and are essential for human well-
being (Corvalan et al., 2005). There is broad consensus that
anthropogenic activities significantly affect ecosystems services
and functions (Vitousek et al., 1997; McMichael et al., 2003;
Halpern et al., 2008). Anthropogenic activities such as agriculture,
fishing, livestock production, energy generation, and transportation
can negatively affect the environment and do so in different ways.

Meanwhile, changes to ecosystem functions due to human
development rebound on the well-being and health of human
populations. Ecosystem functions and health have a direct impact
on key economic and social issues: livelihood, income, local
migration, political conflicts, public health, and development
(Montgomery et al., 1973; Corvalan et al., 2005; IPHI, 2012). In this
regard, several attempts have been made to simulate cost of
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ecosystems services due to anthropogenic activities. Sun and
Miiller (2013) developed decision making framework for carbon-
based payment based on a coupled landuse and agent-based
model. A more comprehensive system was developed by Ausseil
et al. (2013). This indicator-based system is an approach to
resource management considering different aspects of ecosystems
services including: soil erosion, clean water, water availability,
climate regulation, and food and fiber. Landuyt et al. (2013) intro-
duced a semi-quantitative modeling approach (the Bayesian belief
networks) capable of combing unstructured knowledge with
empirical data. However, evaluation of different aspects of eco-
systems services is difficult due to problems associated with inte-
gration of decision and valuation nodes.

The World Health Organization constitution states that “the
enjoyment of the highest attainable standard of health is one of the
fundamental rights of every human being ...”; no further justifi-
cation is required to understand that every individual should have
equitable protection from environmental hazards. For this reason,
environmental justice should be a priority for human communities.
The United States Environmental Protection Agency later expanded
this definition by reinforcing that the protection from
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environmental and health hazards should be fairly distributed
regardless of race, color, national origin, or income (EPA, 2010).
However, not all communities are identical. There are distinctive
geographic distributions of racial and ethnic population (U.S.
Census Bureau, 2010), income (DeNavas-Walt et al., 2013), politi-
cal power, and susceptibility to natural disasters. Further, additional
factors are salient for research on vulnerable populations or those
communities disproportionally affected by environmental hazards
and risks. Examples of these factors are economic and social status,
psychosocial, cultural, and religious background, and physical,
chemical or biological environmental conditions (Morris, 2010;
Burger and Gochfeld, 2011). The combined effects of these factors
can also lead a community to be described as vulnerable where it is
unequally exposed to an environmental hazard (Burger and
Gochfeld, 2011).

Improvement of water resources management will require
integration of environmental, social, and economic dimensions
(UNEP, 2009). Holistic watershed management accomplishes this
by considering these three dimensions concurrently (Pahl-Wostl
et al., 2008). However, their integration in a holistic manner is
not without challenges. First, social and environmental impact as-
sessments are generally independent (Slootweg et al., 2001; Tolun
etal., 2012). Second, these systems are dynamic in nature; they vary
spatially, temporally, and across organizational units (Liu et al,,
2007). Third, populations are disproportionately affected by envi-
ronmental hazards (Maantay, 2002; Nweke, 2011). Fourth, the in-
terrelationships between human and natural systems are complex
and largely unknown (Liu et al., 2007). In light of these barriers,
spatial analyses that address the complexity of socio-ecological
systems and illustrate environmental justice in watershed man-
agement are lacking (Nowak et al., 2006; Silver, 2008; Gallo and
Goodchild, 2012).

To better assess environmental justice issues, various tech-
niques have been implemented in the past few decades. Modeling
is a useful approach for explaining how social and environmental
factors interconnect (Chakraborty et al., 2011). Moreover, models
can be a powerful technique to track environmental health dis-
parities by characterizing complex systems that take place in
multilevel transdisciplinary contexts (Gibbons et al., 2007). Envi-
ronmental justice models vary with regard to categorization as
spatial and conceptual models.

In a spatial model, the first step is to define the scale of analysis
and an adequate spatial unit (Maantay, 2002). Commonly used
spatial units are county, census tract, ZIP code, block, and neigh-
borhood (Lobao et al., 2007). A challenge, however, is that different
types of data come in different units and forms. For example,
population socio-demographic data can be in aggregated areal form
such as census tracts, unlike environmental data in the form of
point patterns from monitoring stations or point source discharges
(Chakraborty et al., 2011). The second step is to define the method
of analysis. Each method presents a different understanding of
where the hazard can be found, and therefore, which community is
affected (Maantay, 2002; Mohai and Saha, 2006). Understanding
the dynamic behavior of the study exposure hazard is a third step.
Environmental hazards can have unique diffusion patterns
depending on the media; for example, pollutants present in air or
water travel differently through space (Kjellstrom et al., 2006).
Once the hazard and the transport media have been identified,
techniques such as dispersion models can be linked to proximity
analysis to better estimate the exposure risk (Maroko, 2012).
Finally, geographic information systems, spatial statistics, and
population estimation techniques can be integrated to develop
better estimations for the spatial model.

Spatial models have many advantages. They type of models
integrate visualization with exploration and statistical techniques

to identify trends and significant relationships for environmental
justice assessments (Jerrett et al., 2010). Furthermore, spatial
modeling simulates different scenarios to test the impact of given
conditions. Finally, spatial modeling techniques allow simulation of
multiple emission sources, allowing cumulative risk analysis
(Chakraborty et al., 2011). There are some limitations to spatial
models. First, it is a challenge to find data at a spatial resolution
capable of correctly representing the relationship between envi-
ronmental health hazards and socio-demographic characteristics.
Second, the nature of the relationship between environmental
hazards and social disparities can be a function of the spatial unit
examined (Sanchez et al., 2014). A third limitation is that spatial
models assume the hazard is distributed uniformly within the area
of exposure (Maantay, 2002). Finally, socio-demographic data is
generally represented in an aggregated form (e.g. country, county,
census tracts, and blocks). In higher level units (e.g. country,
county) the data will be less accurate than lower level units (e.g.
census tracts, blocks) in serving as an indicator of environmental
health disparity (Lobao et al., 2007).

In conceptual models, the first step is understanding the theory
behind the system. An extensive literature review is required to link
significant social and environmental factors (Helfand and Peyton,
1999; Burger and Gochfeld, 2011; Linder and Sexton, 2011). Ex-
amples of input factors that have been used in conceptual models
are economic indices, social engagement, behavioral responses,
psychological factors, ethnicity, and physical or biological envi-
ronmental conditions (Linder and Sexton, 2011). Finally, the con-
ceptual model is instantiated by creating pathways that connect the
factors. These pathways serve as tracking systems identifying
hazard sources and the impacted populations (Helfand and Peyton,
1999). Conceptual models have several advantages. First, a con-
ceptual model can elucidate the physical processes that take place
between society and nature (WHO, 2009). Second, conceptual
models allow researchers to track hypothetical causes of in-
equalities by integrating multiple factors and processes (Diez Roux,
2012). A third advantage is that conceptual models allow tracking
hazards at different locations: at the source of contamination,
where environmental media and transport mechanism occurs, at
exposure locations, and at the receptor population (Burger and
Gochfeld, 2011). However, there is a debate among researchers
regarding the implementation of conceptual models (Linder and
Sexton, 2011). The model construction and data use is subjective,
as well as the results, where interpretation may vary between
disciplines (Diez Roux, 2012).

While a range of modeling techniques have attempted to
simulate human-nature systems; many challenges remain that
require innovation and multidisciplinary collaboration towards a
better decision making process (Wandersee et al., 2012). The Na-
tional Institute of Environmental Health Sciences combined geo-
spatial framework and data mining to monitor the impacts of
Hurricane Katrina (Pezzoli et al., 2007). This portal was successfully
used to track environmental consequences of natural and man-
made disasters. Hierarchical Linear Modeling is an extension of a
linear regression model that can handle variability at multiple
levels of nesting (Snijders and Bosker, 2012). Cheruvelil et al. (2008)
used this technique to capture the variation in water quality for 479
lakes in Michigan. As a results, HLM effectively explained 3%—60%
of the variation for lake water chemistry and clarity. In this study,
we account for complex relations in the data and build our con-
ceptual model by applying structural equation modeling (SEM).
SEM has advantages regarding its ability to incorporate direct and
indirect effects, reciprocal relations, feedback loops, and observed
and latent variables (Bollen, 1989; Paxton et al., 2011; Schumacker
and Lomax, 2010). We use confirmatory factor analysis (CFA) in
SEM to create latent variables and examine their explanatory
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