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a b s t r a c t

We propose a novel distributed algorithm to cluster graphs. The algorithm recovers the solution obtained
from spectral clustering without the need for expensive eigenvalue/eigenvector computations. We prove
that, by propagating waves through the graph, a local fast Fourier transform yields the local component
of every eigenvector of the Laplacian matrix, thus providing clustering information. For large graphs,
the proposed algorithm is orders of magnitude faster than random walk based approaches. We prove
the equivalence of the proposed algorithm to spectral clustering and derive convergence rates. We
demonstrate the benefit of using this decentralized clustering algorithm for community detection in social
graphs, accelerating distributed estimation in sensor networks and efficient computation of distributed
multi-agent search strategies.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been great interest in the analysis
of large interconnected systems, such as sensors networks, social
networks, the Internet, biochemical networks, power networks,
etc. These systems are characterized by complex behavior that
arises due to interacting subsystems. Graph theoretic methods
have recently been applied and extended to study these systems.
In particular, spectral properties of the Laplacianmatrix associated
with such graphs provide useful information for the analysis
and design of interconnected systems. The computation of
eigenvectors of the graph Laplacian is the cornerstone of spectral
graph theory (Chung, 1997; von Luxburg, 2007), and it is well
known that the sign of the second (and successive) eigenvectors
can be used to cluster graphs (Fiedler, 1973, 1975).

The problem of graph (or data, in general) clustering arises
naturally in applications ranging from social anthropology (Kottak,
1991), gene networks (Speer, Fröhlich, Spieth, & Zell, 2005), protein
sequences (Paccanaro, Casbon, & Saqi, 2006), sensor networks
(Akyildiz, Su, Sankarasubramaniam, & Cayirci, 2002; Ghiasi,
Srivastava, Yang, & Sarrafzadeh, 2002; Muhammad & Jadbabaie,
2007), computer graphics (Herman, Melançon, & Marshall, 2000)
and Internet routing algorithms (Kempe & McSherry, 2008).
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Serrani under the direction of Editor Miroslav Krstic.
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The basic idea behind graph decomposition is to cluster
nodes into groups with strong intra-connections but weak inter-
connections. If one poses the clustering problem as aminimization
of the inter-connection strength (sum of edge weights between
clusters), it can be solved exactly and quickly (Stoer & Wagner,
1997). However, the decomposition obtained is often unbalanced
(some clusters are large and others small) (von Luxburg, 2007).
To avoid unbalanced cuts, size restrictions are typically placed on
the clusters, i.e., instead of minimizing inter-connection strength,
we minimize the ratio of the inter-connection strength to the
size of individual clusters. This, however, makes the problem NP-
complete (Wagner &Wagner, 1993). Several heuristics to partition
graphs have been developed over the past few decades (Porter,
Onnela, & Mucha, 2009) including the Kernighan–Lin algorithm
(Kernighan & Lin, 1970), Potts method (Reichardt & Burnholdt,
2004), percolation basedmethods (Palla, Derényi, Farkas, & Vicsek,
2005), horizontal–vertical decomposition (Varigonda, Kalmar-
Nagy, Labarre, & Mezic, 2004) and spectral clustering (Fiedler,
1973, 1975).

1.1. Spectral clustering

Spectral clustering has emerged as a powerful tool of choice
for graph decomposition purposes (see von Luxburg, 2007 and
references therein). The method assigns nodes to clusters based
on the signs of the elements of the eigenvectors of the Laplacian
corresponding to increasing eigenvalues (Chung, 1997; Fiedler,
1973, 1975). In Spielman and Teng (2004), the authors have
developed a distributed algorithm for spectral clustering of graphs.
The algorithm involves performing random walks, and at every
step neglecting probabilities below a threshold value. The nodes
are then ordered by the ratio of probabilities to node degree and

0005-1098/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2011.09.019

http://dx.doi.org/10.1016/j.automatica.2011.09.019
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:SahaiT@utrc.utc.com
mailto:SperanA@utrc.utc.com
mailto:BansaszA@utrc.utc.com
http://dx.doi.org/10.1016/j.automatica.2011.09.019


16 T. Sahai et al. / Automatica 48 (2012) 15–24

grouped into clusters. Since this algorithm is based on random
walks, it suffers, in general, from slow convergence.

Since the clustering assignment is computed using the eigen-
vectors/eigenvalues of the Laplacian matrix, one can use standard
matrix algorithms for such computation (Golub & Loan, 1996).
However, as the size of the matrix (and thus the corresponding
network) increases, the execution of these standard algorithms be-
comes infeasible onmonolithic computing devices. To address this
issue, algorithms for distributed eigenvector computations have
been proposed (Kempe&McSherry, 2008). These algorithms, how-
ever, are also (like the algorithm in Spielman & Teng, 2004) based
on the slow process of performing random walks on graphs.

1.2. Wave equation method

In a theme similar to Mark Kac’s question ‘‘Can one hear the
shape of a drum?’’ (Kac, 1966), we demonstrate that by evolving
the wave equation in the graph, nodes can ‘‘hear’’ the eigenvectors
of the graph Laplacian using only local information. Moreover,
we demonstrate, both theoretically and on examples, that the
wave equation based algorithm is orders of magnitude faster
than random walk based approaches for graphs with large mixing
times. The overall idea of the wave equation based approach is
to simulate, in a distributed fashion, the propagation of a wave
through the graph and capture the frequencies at which the graph
‘‘resonates’’. In this paper, we show that by using these frequencies
one can compute the eigenvectors of the Laplacian, thus clustering
the graph. We also derive conditions that the wave must satisfy in
order to cluster graphs using the proposed method.

The paper is organized as follows: in Section 2 we describe cur-
rent methodologies for distributed eigenvector/clustering compu-
tation based on the heat equation. In Section 3 the new proposed
wave equation method is presented. In Section 4 we determine
bounds on the convergence time of thewave equation. In Section 5
we show some numerical clustering results for a few graphs, in-
cluding a large social network comprising of thousands of nodes
and edges. We then show, in Section 6, how the wave equation can
be used to accelerate distributed estimation in a large-scale envi-
ronment such as a building. In Section 7 we show how the pro-
posed distributed clustering algorithm enables one to efficiently
transform a centralized search algorithm into a decentralized one.
Finally, conclusions are drawn in Section 8.

2. From heat to wave equation: related work

Let G = (V , E) be a graph with vertex set V = {1, . . . ,N} and
edge set E ⊆ V×V , where aweightWij ≥ 0 is associatedwith each
edge (i, j) ∈ E, andW is theN×N weighted adjacencymatrix of G.
We assume that Wij = 0 if and only if (i, j) ∉ E. The (normalized)
graph Laplacian is defined as,

Lij =


1 if i = j

−Wij

 N−
ℓ=1

Wiℓ if (i, j) ∈ E

0 otherwise,

(1)

or equivalently, L = I−D−1WwhereD is the diagonal matrix with
the row sums ofW.

Note that in this work we only consider undirected graphs. The
smallest eigenvalue of the Laplacian matrix is λ1 = 0, with an
associated eigenvector v(1)

= 1 = [1, 1, . . . , 1]T . Eigenvalues
of L can be ordered as, 0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN
with associated eigenvectors 1, v(2), v(3), . . . , v(N) (von Luxburg,
2007). It is well known that the multiplicity of λ1 is the number of
connected components in the graph (Mohar, 1991). We assume in
the following that λ1 < λ2 (the graph does not have disconnected
clusters). We also assume that there exist unique cuts that divide

Fig. 1. Spectral clustering: The sign of the i-th element of eigenvector v2
determines the cluster assignment of the i-th vertex, demonstrated on a simple line
graph example (shown in the center). With+we plot the value of the components
of v2 .

the graph into k clusters. In otherwords,we assume that there exist
k distinct eigenvalues close to zero (Luxburg, Bousquet, & Belkin,
2004).

Given the Laplacian matrix L, associated with a graph G =
(V , E), spectral clustering dividesG into two clusters by computing
the sign of theN elements of the second eigenvector v(2), or Fiedler
vector (Fiedler, 1975; von Luxburg, 2007). This process is depicted
in Fig. 1 for a line graph where one edge (the edge (5, 6)) has lower
weight than other edges.

More than two clusters can be computed from signs of the
elements of higher eigenvectors, i.e. v(3), v(4), etc. von Luxburg
(2007). Alternatively, once the graph is divided into two clusters,
the spectral clustering algorithm can be run independently on both
clusters to compute further clusters. This process is repeated until
either a desired number of clusters is found or no further clusters
can be computed. This method can also be used to compute a
hierarchy of clusters.

There are many algorithms to compute eigenvectors, such as
the Lanczos method or orthogonal iteration (Golub & Loan, 1996).
Although some of these methods are distributable, convergence is
slow (Golub & Loan, 1996) and the algorithms do not consider/take
advantage of the fact that the matrix for which the eigenvalues
and eigenvectors need to be computed is the adjacency matrix of
the underlying graph. In Kempe and McSherry (2008), the authors
propose an algorithm to compute the first k largest eigenvectors
(associated with the first k eigenvalues with greatest absolute
value)2of a symmetric matrix. The algorithm in Kempe and
McSherry (2008) emulates the behavior of orthogonal iteration.
To compute the first k eigenvectors of a given matrix J, at each
node in the network, matrix Vi =

∑
j∈N (i) JijQj is computed, where

Qj ∈ RN×k is initialized to a random matrix and N (i) is the set of
neighbors of node i (including node i itself). Orthonormalization
is achieved by the computation of matrix Ki = VT

i Vi at every
node, followed by computation of matrix K, which is the sum of
all the Ki matrices in the network. Once matrix K is computed,
Qi = ViR−1 is updated at each node, where R is a unique matrix
such that K = RTR (Cholesky decomposition). The above iteration
is repeated untilQi converges to the i-th eigenvector. The sumof all
the matrices Ki is done in a decentralized way, using gossip (Shah,
2009), which is a deterministic simulation of a randomwalk on the
network. In particular, at each node one computes the matrix K as

2 Note that in the case of spectral clustering we desire to compute the smallest k
eigenvectors of L. The algorithm is still applicable if we consider the matrix I− L.
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