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a b s t r a c t

We present a continuous variable Bayesian networks modeling framework that integrates the graphical
representation of a Bayesian networks model with empirical model-developing approach. Our model
retains the Bayesian networks model's graphical representation of hypothesized causal connections
among important variables and employs conventional statistical modeling approaches for establishing
functional relationships among these variables. The modeling framework avoids discretizing continuous
variables and the resulting models can be updated over time when new data are available or updated
using local data to develop a site-specific model. We illustrate the modeling approach using a data for
establishing nutrient criteria in streams and rivers in Ohio, U.S.A.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Bayesian networks (BN) modeling approach is increasingly
used in environmental modeling for supporting management de-
cisions (see Chen and Pollino (2012) and Aguilera et al. (2011) for
reviews). One of the most appealing feature of a BN model is likely
its graphical approach for illustrating complicated connections
among multiple components of a problem thereby facilitating the
communication of scientific research to a wide range of stake-
holders. Furthermore, the relatively simple graphical structure al-
lows participation of stakeholders in model developments.

An oft-downplayed drawback of the BN approach is the need for
discretizing continuous variables. Discretization is a problem not
only because of the potential loss of statistical accuracy (Chen and
Pollino, 2012), but also because of the difficulty in subsequent
interpretation. The difficulty arises because the discretized variable
is often categorized as, for example, low,medium, and high. Because
there is no consensus on how to properly discretize a continuous
variable, the resulting categories are often ambiguous and their

meanings depend on the context. For example, Kashuba (2010)
developed a BN model for assessing stream ecosystem status in
southeast U.S. Using the equal frequency method, the variable
defining watershed urban intensity (% developed land) is divided
into four bins (low 0e11%, medium low 12e36%, medium high
37e65%, and high 66e100%). This division would likely be mean-
ingless if applied to a different region. For example, almost all
headwater stream watersheds in Maine, U.S.A. will fall into the
category “low” (0e11%) (Susan Davies, 2009, personal communi-
cation). In developing a eutrophication BN model for an estuary in
North Carolina, Nojavan et al. (2014) divided the variable total ni-
trogen concentration into three bins (<56, 56e334, and >334 mg/L)
based on data from 2007 to 2011. Because the water quality of their
study area has been improving since the mid-1990s, the category
“low” would include more than half of the observations collected
since 2012 (Nojavan, 2014).

Furthermore, how a continuous variable is discretized (dis-
cretization methods and number of bins) is directly linked to the
subsequent models. Discretization methods and number of bins
can change a BN model's structure when using structural learning
algorithms (Alameddine et al., 2011), as well as the conditional
probability tables when using a fixed model structure (Nojavan,
2014).
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Although recognized by many, the problem of discretization is
often unmentioned in many applications of BN in the environ-
mental modeling literature (Aguilera et al., 2011). In this paper, we
present a framework for developing a BN model without dis-
cretizing continuous variables. Our aim is to develop a probabilistic
modeling framework that can be used for supporting management
and decision-making under uncertainty, specifically, for making
operational decisions (Kelly et al., 2013). The approach borrows the
basic model-construction strategy used in a BN model (Jensen,
2001), and expands the model specification and fitting using
traditional data exploration and regression (Weisberg, 2005;
Gelman and Hill, 2007; Qian, 2010) and the model updating using
Bayesian computation [Markov chain Monte Carlo simulation,
(Qian et al., 2003)]. The model structure is developed through a
directed acyclic diagram (DAG) model (Lauritzen, 1996), with con-
nections among nodes represented by empirical models.

We present the general framework of developing a continuous
variable Bayesian networks (cBN) model in Section 2.1 and apply it
to a data collected for establishing nitrogen criterion for Ohio's
small rivers and streams in Section 2.2. We also discuss the process
of updating the resulting model using local or regional data for
developing local and regional nutrient criteria.

2. Methods

In a traditional environmental modeling domain, we often discuss the trade-off
between a mechanistic model and an empirical model. A mechanistic model is a
summary of the functional connections among multiple components of a real world
problem, reflecting the causal relationship we know. These models are, in theory,
suited for supporting management decision-making. But a mechanistic model is
often overly complicated and may not be practical for proper model calibration
because of the limited availability of appropriate data. Empirical or statistical models
establish correlations, which do not necessarily reflect causal relations. Models such
as DAG models represent a middle ground between the two approaches. The hy-
pothetical relationships among relevant variables are presented using a graphical
model and the functional forms of these relationships (e.g., differential equations)
are represented using conditional probability tables. As a result, fast computing
algorithms can be applied. However, as noted earlier, discretization can be a source
of many problems. We propose a modeling framework to avoid discretization and
yet retain the advantages of a BN model.

2.1. A continuous variable Bayesian network model

Graphical models such as the BN models (Pearl, 1986, 1988; Jensen, 2001) take
full advantage of the conditional probability structure, not only in model formula-
tion, but also in computation. However, a BN model is limited to using categorical
variables. When continuous variables must be used, we either discretize them (BN)
or we assume that the continuous variables are normal random variates and con-
nections among nodes are linear [the structural equations model (Bollen, 1989;
Grace, 2006)]. With the advent of the Gibbs Sampler (Gelfand and Smith, 1990),
the computation requirements are less restrictive. The Bayesian inference software
WinBUGS (Gilks et al., 1994; Lunn et al., 2000) (now OpenBUGS (Spiegelhalter et al.,
2014)) and JAGS (Plummer, 2003) further popularize the use of Gibbs sampler. We
can now conduct the same complex computing with continuous variables without
using discretized conditional probability models, without assuming normality, and
without being limited to linear models. Consequently, we can take advantage of both
the causal relationship (the DAG model) and the available data to build a Bayesian
network model using continuous variables.

The basic idea of our modeling approach is to replace the conditional probability
tables (CPTs) for factor variables in a BN model with a series of conditional proba-
bility distributions for continuous variables. With CPTs, we use the conditional
probability formula (the Bayes theorem) to quantify the functional relations among
variables and the formula can be readily programmed. When using continuous
conditional probability distributions, the computation can be implemented using
the Gibbs sampler, or more generally Markov chain Monte Carlo (MCMC) simulation
(Gilks et al., 1996; Qian et al., 2003).

We describe the computational strategy using a hypothetical model (Fig.1(a)). In
this simple DAG, two nodes have parent nodes (nodes X1 and X2 are parent nodes to
Y1 and nodes Y1 and X3 are parents to Y2). Arrows in the DAG represent the direc-
tional dependency among the five variables (e.g., Y1 is a function of X1 and X2). If we
consider a DAG such as the one in Fig. 1(a) as a joint probabilistic model of the
variables in all nodes, the DAG provides a causal structure which can be translated
into conditional probability distributions such that the joint distribution can be
simplified. Let V be the collection of all variables represented by the DAG
(V ¼ {X1,X2,X3,Y1,Y2}), the joint distribution of V can be represented as

pðVÞ ¼ Q
v2V

pðvjparents½v�Þ, where p(,) represents a probability distribution function.
For the model in Fig. 1(a), the joint distribution is p(V) ¼ p(X1)p(X2)p(Y1jX1,X2)p(X3)
p(Y2jY1,X3). When all variables are categorical, these conditional probability distri-
butions are represented by conditional probability tables, and the multiplication
operation is done through the Bayes theorem.

When these variables are continuous, we can specify the marginal distributions
of X1,X2 and X3 directly (e.g., histograms of data) and the conditional distributions of
Y1jX1,X2 and Y2jY1,X3 empirically, using perhaps linear or nonlinear regression
analysis. For example, if a regression model is used, we may denote the conditional
distribution as Y1 ¼ f(X1,X2,a)þ ε1, or Y1jX1,X2~N(m1,s12), where f(,) denotes a linear or
nonlinear function of X1 and X2, m1 ¼ f(X1,X2,a) with coefficients a, and ε1~N(0,s12) is
the residual random variable. Likewise, exploratory analysis can lead to the condi-
tional distribution of Y2jX3,Y1~N(m2,s22), where m2¼ g(X3,Y1,b). Furthermore, variables
in V can be divided into predictors (X's, observed without error) and response var-
iables (Y's, observed with error). When data are available for all variables, the model
is reduced to a problem of estimating the probability distribution of model co-
efficients (a and b) and error variances (s12,s22), and the graphical model in Fig. 1(a) is
revised to a DAG representing the computational process (Fig. 1(b), where oval
nodes are quantities to be estimated, rectangle nodes are variables with observa-
tions, and arrows representing the functional dependency). For example, the data
node y1 is a child node of m1 and s1

2, representing the distributional assumption
y1~N(m1,s12); the parameter node m2 has three parent nodes e m1,x3, and model co-
efficient vector b. If we use a linear regression model, the node m2 represents the
linear model mean function m2 ¼ b0 þ b1m1 þ b2x3.

We note that variable Y1 in Fig. 1(a) is a parent to Y2, while in Fig. 1(b) the
connection between the two variables are established through their respective
means m1 and m2. In other words, we replace the CPTs in a BN model with functions
for calculating m1 and m2 (f and g in Fig. 1(b)).

Just as eliciting CPTs is an important step of building a BN model, finding the
likely functional forms of f and g is an important component for our modeling
framework.We can derive the functional forms based on our substantive knowledge
(e.g., mechanistic models) or based on empirical modeling through exploratory
regression analysis (see Chapter 4 of Gelman and Hill (2007)). When using the
empirical modeling approach, we use the DAG as a guide for building component
models (finding the likely functional forms of f and g) one at a time. Once these
functional forms are established, they can be linked to form the joint distribution of
all variables. The resulting model is a continuous variable Bayesian network model
(cBN). Model parameters (e.g., a,b in Fig. 1) should be estimated simultaneously
using the Gibbs sampler. Once the joint distribution is quantified (all unknown
parameters are estimated), statistical inference can be made through Monte Carlo
simulations.

Borsuk et al. (2004) proposed a similar modeling approach. However, their
model was implemented in Analytica (Lumina, 1997), which requires fixed model
coefficients. As a result, conditional models (e.g., p(Y1jX1,X2) are fit independently
and cannot be updated upon new observations (nor refit jointly).

2.2. The Ohio example

We illustrate the model-building process using data fromwadeable streams and
rivers in Ohio collected as part of the effort for setting nutrient criteria. The data is
“cross-sectional” in that they represent multiple streams and rivers across the state
of Ohio. The objective of the model is to establish a link between nutrient concen-
tration and indicators of stream aquatic ecosystem condition. Through the link, we
find the nutrient concentration distribution associated with an aquatic ecosystem
that is likely to meet the designated use. Our approach follows the following steps:

1. Developing a conceptual model linking nutrient concentrations and other fac-
tors to stream aquatic ecosystems indicators (e.g., Fig. 1(a)),

2. Building empirical (e.g., regression) models among nodes (if such functional
relationships are unknown) using available data and expressing these models in
terms of conditional probability distributions (probability distribution of a child
node conditional on its parent node(s)),

3. Revising the initial graphical model to connect data and unknown parameters
(e.g., Fig. 1 (b)), and

4. Estimating all unknown parameters of the joint probabilistic distribution using
the Gibbs sampler.

Once the joint distribution of all relevant variables (nodes) are quantified, we
can derive the (conditional) distribution of nutrient concentration that is associated
with acceptable stream ecosystem indicator values. This conditional distribution can
be used to define acceptable nutrient concentrations.

Data collection and the initial nutrient criteria development process are re-
ported by Miltner (2010). The objective of a nutrient criterion is to ensure that
streams meet the designated use for aquatic life, which is measured by one or more
macroinvertebrate metrics in Ohio. We use the Invertebrate Community Index (ICI)
and the EPT taxa richness [EPT, number of Ephemeroptera (mayfly), Plecoptera
(stonefly), and Trichopera (caddisfly) taxa in a sample (Ohio EPA, 1978)] in our
illustration. Because stream macroinvertebrate community are affected by many
other factors (e.g., stream flow, habitat condition, watershed land use, shading, etc.)
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