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a b s t r a c t

This study presents an analysis based on recent developments in network theory to examine the spatial
dynamics of rainfall. The concepts of clustering coefficient and degree distribution are employed to study
the spatial connections in a rainfall network across Australia. The clustering coefficient is a measure of
local density, while the degree distribution is a measure of spread. Monthly rainfall data over a period of
68 years from a network of 230 gaging stations across Australia are analyzed, and different correlation
thresholds are considered. The clustering coefficient results help identify actual neighbors and actual links
in the network as well as stations/regions with high and low connectivities. The results from both
methods also suggest that the network is not a purely random graph but may be an exponentially
truncated power-law network. The connectivity and type of the raingage network are also influenced by
the correlation threshold used for identifying connections.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rainfall forms a key input in numerous studies associated with
water and environmental systems, including streamflow fore-
casting, soil moisture estimation, water quality analysis, and sedi-
ment transport modeling. Therefore, adequate understanding of its
spatial/temporal variability is crucial for reliable investigations and
outcomes. However, such is also an extremely challenging problem,
as rainfall is highly variable in space/time, due to a combination of
factors, including climatic conditions, rainfall generating mecha-
nisms, topographic characteristics, land use, and proximity to sea
and other water surfaces. This is particularly the case for large
countries, such as Australia, where rainfall is highly variable in
space/time, due to the influence of different climates in different
regions/periods.

During the last century, numerous approaches have been pro-
posed and applied to study the spatial/temporal variability of
rainfall. Such approaches are based on correlation, scale, pattern,
similarity, dimensionality, entropy, and many other properties.
Extensive details of these can be found in, for example, Zawadzki
(1973), Berndtsson (1988), Gupta and Waymire (1990), Krstanovic

and Singh (1992), Mishra and Coulibaly (2009), Niu (2013), and
Sivakumar et al. (2014). The approaches and the associated
methods have certainly helped advance our understanding of the
spatial variability of rainfall. Notwithstanding this advancement,
our ability to reliably represent the rainfall variability in space re-
mains far from satisfactory. There is, therefore, a need to find new
ways to improve studies on spatial rainfall representation. As
rainfall in space can be represented in the form of connections in a
network (e.g. connections in rainfall observed across a network of
monitoring stations), developments in network theory and other
concepts in the field of complex systems science can offer new av-
enues. This offers motivation for applying the concepts of complex
networks to study spatial rainfall dynamics.

The concept of networks is not new. Its origin can be traced back
to the eighteenth century (Euler, 1741), with important theoretical
developments and applications since then (see Listing, 1848;
Cayley, 1857; Erd€os and R�enyi, 1960; Bollob�as, 1998), largely un-
der the umbrella of graph theory. However, new discoveries (e.g.
small-world networks, scale-free networks, network motifs, com-
munity structure) in the past two decades within the context of the
science of complex networks (e.g. Watts and Strogatz, 1998; Barab�asi
and Albert, 1999; Girvan and Newman, 2002;Milo et al., 2002) have
helped put the concept at a whole different level. As a result,
theoretical studies and practical applications of the ideas of com-
plex networks are among the most fascinating scientific endeavors
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at the current time; see, for example, Barab�asi (2002) and Estrada
(2012). While their applications in hydrology and closely-related
fields are still in the state of infancy (e.g. Suweis et al., 2011;
Boers et al., 2013; Scarsoglio et al., 2013; Sivakumar and
Woldemeskel, 2014), the results are certainly encouraging.
Indeed, Sivakumar (2015) argues that the science of networks can
offer a generic theory for hydrology, one that based on connections.

To our knowledge, there have thus far been only three studies
(Malik et al., 2012; Boers et al., 2013; Scarsoglio et al., 2013) that
have applied the ideas of complex networks for examining spatial
variability of rainfall. Malik et al. (2012) studied the spatial char-
acteristics of extreme (summer) monsoonal rainfall over South
Asia, through analysis of daily gridded rainfall data from 1951 to
2007. Boers et al. (2013) investigated the spatial characteristics of
extreme rainfall synchronicity of the South American Monsoon
System (SAMS), through analysis of a 15-year long (January
1998eDecember 2012) gridded daily rainfall data with a spatial
resolution of 0.25� � 0.25�, obtained from the Tropical Rainfall
Measuring Mission (TRMM) 3B42 V7 satellite product. Scarsoglio
et al. (2013) examined the spatial dynamics of annual precipita-
tion around the globe, through analysis of a 70-year long (January
1941eDecember 2010) gridded precipitation data from the Global
Precipitation Climatology Centre (GPCC) Database. These studies
and the reported outcomes are clearly interesting, as they offer
important insights regarding the utility of different measures of
complex networks for spatial dynamics of rainfall and their effec-
tiveness. Nevertheless, two key points need to be highlighted here:
(1) the above studies focused on different scales of data for different
purposes e Malik et al. (2012) and Boers et al. (2013) focused on
daily data for extreme rainfall analysis, while Scarsoglio et al. (2013)
focused on annual data for long-term patterns; and (2) the studies
were based on gridded rainfall data, which, although often are at
finer resolutions and obtained by merging space-based and
ground-based data, generally have a greater degree of uncertainty
when compared to raingage data.

As for the scale of data for analysis, it is important to recognize
that, despite the possible existence of scaling behavior, the dy-
namics of rainfall are often significantly different at different
temporal scales, due to various factors. For instance, the properties
of rainfall at the annual scale (studied by Scarsoglio et al., 2013) are
more related to long-term climatic patterns and at the daily scale
(studied by Malik et al., 2012 and Boers et al., 2013) are related to
within season and event variability, while rainfall properties at the
monthly scale are more related to seasonal, annual, and decadal
variability. This explains the obvious need for the study of rainfall
dynamics at the monthly scale. In addition, from the perspective of
medium-term (from few years to few decades) water resources
planning and management, including for water supply, reservoir
operation, agriculture, and environmental flows, monthly scale is
far more appropriate than daily or annual scale. Therefore, in the
present study, we apply the ideas of complex networks to examine
the spatial dynamic characteristics of monthly rainfall, and we also
consider data measured using raingages. We analyze monthly
rainfall data recorded over a period of 68 years (1940e2007) at a
network of 230 raingage stations across Australia. We use the
clustering coefficient (which quantifies the tendency of a network to
cluster e a measure of local density) and degree distribution (which
expresses the fraction of nodes in a network with a certain number
of links e a measure of spread) as measures to examine the spatial
connections in rainfall. We also study the influence of different
rainfall correlation thresholds.

The rest of this paper is organized as follows. Section 2 presents
a brief description of the procedure for calculation of clustering
coefficient and degree distribution in networks. Section 3 offers
details of the study area and rainfall data. Section 4 presents the

analysis, results, and their discussion. Some closing remarks are
made in Section 5.

2. Network methodology

A network is a set of points connected together by a set of lines. The points are
called as nodes or vertices and the lines are called as links or edges. Mathematically, a
network can be represented as G¼ {P,E}, where P is a set of N nodes (P1,P2,…,PN) and
E is a set of n links. There are many different ways to study the characteristics of
networks. For instance, networks can be studied by their clustering, topology, ad-
jacency, centrality, and entropy properties. Similarly, there are also different mea-
sures and methods to represent these properties. These include clustering
coefficient, degree distribution, average shortest path length, and degree centrality,
among others. This study uses clustering coefficient and degree distribution to
examine the spatial dynamics of rainfall. A brief description of these is below.

2.1. Clustering coefficient

The clustering coefficient quantifies the tendency of a network to cluster (Watts
and Strogatz, 1998) and, therefore, is basically a measure of local density. The pro-
cedure for the calculation of the clustering coefficient is as follows. Let us assume a
node i in a network and that it has ki links which connect it to ki other nodes, as
shown in Fig. 1. These ki nodes are the neighbors of node i, and can be identified
based on some criterion, such as correlation between node i and the other nodes in
the network. If the neighbors of the original node (i) were part of a cluster, then
there would be ki(ki � 1)/2 links between them (Fig. 1, right). With this, the clus-
tering coefficient of node i is calculated as the ratio between the number Ei of links
that actually exist between these ki nodes (solid lines on Fig. 1, right) and the total
number ki(ki � 1)/2 (i.e. all lines on Fig. 1, right),

Ci ¼
2Ei

kiðki � 1Þ (1)

The procedure is repeated for each and every node of the network. The average of
the clustering coefficients Ci's of all the individual nodes is the clustering coefficient
of the whole network C.

The clustering coefficient of the individual nodes and of the entire network can
be used to obtain information about the type of network, grouping of nodes, and
identification of dominant nodes, among others. For instance, a clustering coefficient
of 1.0 indicates a completely ordered network, while a very low clustering coefficient
indicates a random network.

2.2. Degree distribution

In a network, different nodes may have different number of links. The number of
links (k) of a node is called as node degree. The degree is an important characteristic
of a node, as it allows one to derive many measurements for the network.

The spread in the node degrees is characterized by a distribution function, p(k),
which expresses the fraction of nodes in a network with degree k. This distribution,
called degree distribution, is often a reliable indicator of the type of network. For
instance, in a purely random graph, since the links are placed randomly, themajority
of nodes have approximately the same degree, and close to the average degree k of
the network. Therefore, the degree distribution of a completely random graph is a
Poisson distribution with a peak at P(k), and is given by:

pðkÞ ¼ e�kk
k

k!
(2)

Similarly, depending upon the properties of networks, degree distribution can also
be, for example, Gaussian

Fig. 1. Network connections and calculation of clustering coefficient: (a) neighbors of
node i; and (b) all links and actual links (solid lines).
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