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a b s t r a c t

Although rainfall input uncertainties are widely identified as being a key factor in hydrological models,
the rainfall uncertainty is typically not included in the parameter identification and model output un-
certainty analysis of complex distributed models such as SWAT and in maritime climate zones. This paper
presents a methodology to assess the uncertainty of semi-distributed hydrological models by including,
in addition to a list of model parameters, additional unknown factors in the calibration algorithm to
account for the rainfall uncertainty (using multiplication factors for each separately identified rainfall
event) and for the heteroscedastic nature of the errors of the stream flow. We used the Differential
Evolution Adaptive Metropolis algorithm (DREAM(zs)) to infer the parameter posterior distributions and
the output uncertainties of a SWAT model of the River Senne (Belgium). Explicitly considering hetero-
scedasticity and rainfall uncertainty leads to more realistic parameter values, better representation of
water balance components and prediction uncertainty intervals.

Published by Elsevier Ltd.

1. Introduction

River basin simulators are useful tools to support the decision
making processes in view of an integrated river basin management.
As a result of the advances in techniques for data acquisition and
measurement, the use of spatially distributed, physically-based and
thus complex river basin simulators has gained increased attention.
However, most of the parameters of such simulators cannot be
measured directly and therefore need to be estimated by model
parameter optimization techniques (Laloy et al., 2010; Laloy and
Vrugt, 2012; Nossent, 2012; Sorooshian and Dracup, 1980). Tradi-
tionally, model parameter optimization has been practiced through
minimizing the difference between the observations and themodel
simulations (e.g. the sum of squared residuals). This approach pri-
marily focuses on the parameter uncertainty, thereby neglecting
input, calibration data and model structure uncertainties (Ajami
et al., 2007; Arnold et al., 2012; Di Baldassarre and Montanari,
2009; G€otzinger and B�ardossy, 2008; Gupta et al., 2012; McMillan
et al., 2011; Minasny et al., 2011; Refsgaard et al., 2007; Renard

et al., 2010; Thyer et al., 2009; Vrugt et al., 2009a, 2008; Yang
et al., 2007).

In hydrological modeling, most of the catchment processes are
conceptualized based on the (limited) physical understanding of
these processes. This inherently results in a simplification of the
actual processes and of their spatial variability (Abbaspour et al.,
2007). In addition, the hydrological simulators require (uncertain)
input data (e.g. rainfall) and they contain conceptual parameters
that need to be estimated through a calibration process. Parameter
estimation remains, however, uncertain and the calibrated
parameter values do not necessarily correspond to the physical
reality (Abbaspour et al., 2007; G€otzinger and B�ardossy, 2008; Yang
et al., 2008). The latter is due to random or systematic errors in the
initial conditions (e.g. soil moisture content), in themodel inputs, in
the observed output data that are used for the model calibration
(e.g. stream flow) and to errors due to the incomplete or biased
model structure.

In the field of hydrology, rainfall uncertainty typically dominates
the uncertainty of the input data (Ajami et al., 2007; Renard et al.,
2009, 2011; Vrugt et al., 2008). The rainfall uncertainty is mainly
due to measurement and sampling errors and to the spatial and
temporal variability of the rainfall (G€otzinger and B�ardossy, 2008;
Laloy et al., 2010; McMillan et al., 2011; Thyer et al., 2009).
Even though it remains a challenging task to address the rainfall
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uncertainty, some promising techniques have emerged in this field.
One of them consists of the use of multiplicative rainfall uncer-
tainty factors at storm event scale (Kavetski et al., 2006a, b; Thyer
et al., 2009; Vrugt et al., 2009a, 2008) or at daily time scale
(Thyer et al., 2009). Recently, a suitable representation of the
rainfall uncertainty through the use of rainfall multiplicative factors
has been validated against experimental evidence by McMillan
et al. (2011). However, the method has so far only been tested on
lumped simulators and not for more complex (semi-) distributed
simulators (Kavetski et al., 2006b; Thyer et al., 2009; Vrugt et al.,
2009a, 2008). Additionally, the feasibility and the applicability of
such methods have not been demonstrated in maritime climate
regions where rainfall is very frequent and persists for longer pe-
riods. For such situations, the large number of rainfall multipliers
might indeed lead to an over-parameterization of the model and to
high computational demands.

In general, neglecting different sources of uncertainty during
the model optimization may result in model outputs that cannot
consistently represent the observations (Ajami et al., 2007). More
importantly, the residuals between the observations and the model
outputs can be characterized by a significant variation in bias (non-
stationarity), variance (heteroscedasticity) and serial dependence
(autocorrelation) under different hydrologic conditions (Ajami
et al., 2007; Schoups and Vrugt, 2010; Sorooshian et al., 1983;
Vrugt et al., 2005; Yen et al., 2014).

In this study, the rainfall multiplication method has been
applied for a complex, highly parameterized, distributedmodel in a
maritime region, using the Soil andWater Assessment Tool (SWAT).
Considering the high rainfall frequency in the region and the multi-
parameter of (semi-) distributed model, we expected that the
existing methods for rainfall multiplication factors might lead to
high-dimensionality problems during themodel calibration (due to
the fact that many additional parameters have to be assessed).
Consequently, we adapted the latter methods in order to reduce the
number of rainfall multipliers. Hereto, we propose a method that
still applies rainfall multipliers, but that minimizes the number of
factors by focusing on significant, independent rainfall events, as
determined by an analysis of the observed stream flow time series.

In addition to the input and parameter uncertainties, also the
uncertainty on the observed output variable used for the calibra-
tion e i.e. the stream flow e was considered. Stream flow data are
not error-free, mainly as a result of the uncertainty in the stage-
discharge rating curve (Domeneghetti et al., 2012; McMillan
et al., 2010; Renard et al., 2011; Thyer et al., 2009).

In what follows, we use a traditional approach for model cali-
bration and uncertainty analysis, whereby only model parameter
uncertainty is considered, and compare it with an approach
whereby we explicitly consider the rainfall uncertainty and the
heteroscedastic nature of the error of the model outputs. For the
latter, the rainfall uncertainty is represented in the calibration
process by unknown independent rainfall multipliers and the error
heteroscedastic behavior of the output errors is represented by
statistical parameters that need to be calibrated. To infer and assess
all these sources of uncertainty, we applied the Differential Evo-
lution Adaptive Metropolis algorithm (DREAM(zs)) (Laloy et al.,
2012; Laloy and Vrugt, 2012; Vrugt et al., 2009b). DREAM(zs) is a
Markov Chain Monte Carlo (MCMC) sampler (Bates and Campbell,
2001; Kuczera and Parent, 1998) that uses sampling from past
states to select candidate points for the individual chains.

This paper concerns the uncertainty analysis (UA) for a SWAT
model of the River Senne in Belgium. The objectives of the paper
are:

a) to evaluate the feasibility of applying rainfall correction factors
for independent rainfall events for a semi-distributed,

physically-based environmental model in a region with a
maritime climate;

b) to assess the different sources of uncertainty in the SWATmodel
of the River Senne and their impact on the parameter
distributions;

c) to assess the impact of considering or neglecting different
sources of uncertainty on the predictive uncertainty of the
simulated stream flows.

2. Materials and methods

2.1. The SWAT simulator

The Soil and Water Assessment Tool (SWAT) is a physically-based, semi-
distributed, hydrologic simulator that operates on different time steps at the basin-
scale. SWAT was originally developed to simulate the impact of watershed man-
agement onwater, sediment, nutrients and agricultural and chemical yields (Arnold
et al., 1998). Moreover, SWAT can model complex watersheds with varying land use,
weather, soils, topography andmanagement conditions over a long period of time. A
watershed is divided into a number of sub-basins that have homogeneous climatic
conditions (Van Liew et al., 2005). Sub-basins are further sub-divided into hydro-
logical response units (HRUs), based on a homogenous combination of land use, soil
type and slope class (Arnold et al., 2011).

SWATassesses awater balance by considering precipitation, evapotranspiration,
surface runoff, interflow, return flow and deep groundwater losses (Neitsch et al.,
2011). The simulator offers a choice to use a modification of the Soil Conservation
Service Curve Number (SCS-CN) method (USDA-SCS, 1986), which determines the
surface runoff based on the area's hydrologic soil group, land use, treatment, and
antecedent moisture content for each HRUs or, alternatively if sub-daily precipita-
tion data are provided, the Green and Ampt method (Green and Ampt, 1911) as
modified byMein and Larson (Mein and Larson, 1973). The percolation through each
soil layer is estimated using a storage routing techniques (Arnold et al., 1995). SWAT
offers three options to estimate the potential evapotranspiration (PET) from climatic
data: the Penman-Monteith method (Monteith, 1965), the Hargreaves method
(Hargreaves et al., 1985) and the Priestley-Taylormethod (Priestley and Taylor, 1972).
The PET can also be read in from a file if measured time series of PET data are
available. River routing can be performed by the variable storage method (Williams,
1969) or by theMuskingummethod (Chow,1959). In this paper, we used the SCS-CN
method for surface runoff simulations, the Penman-Monteith method for the
PET estimation and the Muskingum routing method for the daily stream flow
routing.

2.2. The DREAM algorithm

Various Bayesian algorithms exist for model optimization and uncertainty
quantifications, e.g. the Generalized Likelihood Uncertainty Estimation, GLUE
(Beven and Binley, 1992; Blasone et al., 2008; Feyen et al., 2008; Freer et al., 1996; Jin
et al., 2010; Rojas et al., 2010), the Bayesian Total Error Analysis, BATEA (Kavetski
et al., 2006b, c; Kuczera et al., 2006; Renard et al., 2011; Thyer et al., 2009), the
Bayesian Model Averaging technique, BMA (Ajami et al., 2007; Duan et al., 2007;
Raftery et al., 1997; Rings et al., 2012; Vrugt et al., 2006; Vrugt and Robinson,
2007) and the Differential Evolution Adaptive Metropolis, DREAM (Laloy and
Vrugt, 2012; Schoups and Vrugt, 2010; Vrugt et al., 2008, 2009b). In this paper,
the latter method has been selected to explicitly account for the different sources of
uncertainty and to approximate uncertainty bands based on the posterior proba-
bility density function (pdf) of the considered parameters.

The DREAM algorithm is based on Markov Chain Monte Carlo (MCMC) sam-
pling schemes (Bates and Campbell, 2001; Kuczera and Parent, 1998) and employs
Bayesian updating for maximizing a likelihood function. It was primarily designed
for simultaneous model parameter optimization and uncertainty analysis (UA) for
high dimensional problems, and is particularly suited for parallel computing. For
population evolution, Differential Evolution (DE) is applied in combination with a
Metropolis selection rule to define whether the current candidate replaces the
parent or not. The algorithm is mainly developed based on the Differential
Evolution-Markov Chain (DE-MC) method (ter Braak, 2006) and the Shuffled
Complex Evolution Metropolis (SCEM) algorithm (Vrugt et al., 2003). The main
adaptation with regard to DE-MC is the addition of self-adaptive randomized
subspace sampling. DREAM can also be seen as an adaptation of the SCEM
algorithm, whereby DREAM provides a formal proof of convergence, allows for
parallel computing and is able to deal with multimodal distributions (Nossent,
2012).

DREAM starts with an initial population of points to strategically sample the
space of potential solutions. It searches for the posterior distributions of parameter
values by maximizing the posterior parameter distribution using Bayesian updating,
while simultaneously providing estimates of the parameter uncertainty. The pos-
terior distributions of the considered parameters can be obtained after the run
converges to its stable posterior distribution (Laloy et al., 2010). The convergence can
be monitored using the Ȓ criterion proposed by Gelman and Rubin (1992). The
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