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a b s t r a c t

In this paper, the use of Set Membership (SM) methods is investigated, in order to derive off-line an
approximation of a discontinuous nonlinear model predictive control (NMPC) law. The approximating
function can then be evaluated on-line, instead of solving the nonlinear program embedded in the
NMPC scheme. This way, a significant decrease of computational times may be obtained, thus allowing
the application of NMPC also to systems with ‘‘fast’’ dynamics. It is shown that the knowledge of the
discontinuities is needed to achieve an approximated controller with arbitrarily small approximation
error. By exploiting such a knowledge, SM techniques already developed for the case of continuous NMPC
laws are generalized in order to approximate discontinuous ones. The stability of the origin of the closed
loop system with the approximated control law is analyzed, and a numerical example is employed to
illustrate the features of the proposed approach.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In nonlinear model predictive control (NMPC, see e.g. Mayne,
Rawlings, Rao, and Scokaert (2000)) the control action is computed
by means of a Receding Horizon (RH) strategy, which requires at
each sampling time the solution of a nonlinear program (NLP, see
e.g. Nocedal and Wright (2006)), where the systems state x (and,
possibly, other measured parameters and reference variables)
is a parameter in the optimization. For time invariant systems,
the solution of the NLP defines a static nonlinear function κ(x),
denoted in this paper as the ‘‘nominal’’ control law. In the last
decade, a significant research effort has been devoted to the
problem of efficient implementation of NMPC laws, motivated
by the objective of applying this control strategy also to systems
with relatively ‘‘fast’’ dynamics, in which the employed sampling
period does not allow the real-time solution of the NLP. A possible
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viable approach is the use of an approximated NMPC law κ̂ ≈

κ , derived off-line and then evaluated on-line instead of solving
the NLP. Contributions in the field of approximated NMPC can
be found e.g. in Canale, Fagiano, and Milanese (2009, 2010),
Canale, Fagiano, Milanese, and Novara (2010), Grancharova and
Johansen (2009), Johansen (2004), Parisini and Zoppoli (1995),
Raimondo et al. (2011), Summers, Raimondo, Jones, Lygeros, and
Morari (2010) and Ulbig, Olaru, Dumur, and Boucher (2007),
using various approaches. In particular, approximation techniques
based on Set Membership (SM) theory have been developed
and studied in Canale et al. (2009, 2010) and Canale, Fagiano,
Milanese et al. (2010). In this framework, approximated NMPC
laws with guaranteed accuracy (in terms of a bound on the
pointwise error κ(x) − κ̂(x)) and consequent performance and
stability properties have been derived, with the assumption of
continuity of κ over the compact subset X of the state space
considered for the approximation. Although the assumption of
continuity of κ holds for MPC with linear and ‘‘almost linear’’
models (Mayne & Michalska, 1990) and for a series of problems
with nonlinear models and/or nonlinear constraints, it is well-
known that NMPC laws may be discontinuous and that there exist
systems that cannot be stabilized with continuous control laws
(see e.g. Lazar, Heemels, Bemporad, andWeiland (2007),Michalska
and Vinter (1994), Meadows, Henson, Eaton, and Rawlings (1995)
andMessina, Tuna, and Teel (2005)). In these cases, the guaranteed
properties of the existing SM approaches do not hold anymore. In
the described context, the contributions of this paper are (a) to
show through a motivating example that the knowledge of the
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discontinuities is needed in order to achieve an arbitrarily small
pointwise approximation error, which is required to retain the
closed-loop stability properties, (b) to use such a knowledge to
derive an approximation of a discontinuousNMPC law, using an SM
approach, and (c) to study the closed loop system stability when
the SM approximated law is used. Finally, a numerical example
is employed to show the features of the proposed approximation
technique.

2. Problem settings

Consider the following nonlinear state space model:

xt+1 = f (xt , ut) + wt , ‖wt‖2 ≤ µ (1)

where xt ∈ Rn and ut ∈ Rm are the system state and the control
input, respectively, and wt ∈ Rn is an unknown but bounded
disturbance.

Assumption 1. Function f in (1) is continuous with respect to ut ,
i.e. for any fixed value xt the function f (ut) = f (xt , ut) is continu-
ous over Rm.

The control objective is to regulate the system state to the origin
under some input and state constraints, represented by a convex
set X ⊆ Rn and a compact set U ⊆ Rm, both containing the origin
in their interiors, in which the state and input values xt and ut
should be kept, respectively. In NMPC, the control law ut = κ(xt)
is defined implicitly by a RH strategy, in which at each sampling
instant the following NLP has to be solved:

min
U

J (U, xt)
.
=

Np−1−
k=0

L(xt+k|t , ut+k|t) + Φ(xt+Np|t) (2a)

s.t.

xt+k|t ∈ X, k = 1, . . . ,Np (2b)

ut+k|t ∈ U, k = 0, . . . ,Np (2c)

Stabilizing constraints (2d)

where xt+k|t denotes k steps ahead state prediction using themodel
(1), given the input sequence ut|t , . . . , ut+k−1|t and the ‘‘initial’’
state xt|t = xt , and U =


uT
t|t , . . . , u

T
t+Nc−1|t

T is the vector of the
controlmoves to be optimized.Np ∈ N andNc ∈ N,Nc ≤ Np−1 are
the prediction and the control horizons, respectively. The remain-
ing predicted control moves [ut+Nc |t , . . . , ut+Np−1|t ] can be com-
puted with different strategies (Mayne et al., 2000). The optimal
cost and its optimizer are indicated as J∗(U∗(xt), xt) and U∗(xt). It
is assumed that the optimization problem (2) is feasible over a set
F ⊆ Rn which will be referred to as the ‘‘feasibility set’’, so that
κ :F → U. The application of the RH controller gives rise to the
following nonlinear state feedback configuration:

xt+1 = f (xt , κ(xt)) + wt = F 0(xt) + wt = F 0
w(xt , wt). (3)

The system (3) will be also referred to as the ‘‘nominal’’ closed
loop system in the following. The set of solutions of (3) at the
generic time instant t , starting from the initial condition x0 ∈ F
and considering all the possible realizations of the disturbance
sequences {w}, is indicated here as S0

µ(t, x0)
.
= {φ0

w(t, x0) =

F 0
w(F 0

w(· · · F 0
w(x0, w0)))  

t times

, ∀{wk} : ‖wk‖2 ≤ µ, k = 0, . . . , t}. With

a proper choice of the cost function J and of the stabilizing con-
straints (2d), it is possible to achieve robust closed loop stability
and constraint satisfaction properties in the presence of the dis-
turbancew. In particular, existing approaches for robust NMPC ex-
ploit constraint tightening, state contraction constraints, terminal

set constraints, min–max formulations and input-to-state stability
(ISS) techniques (see e.g. Chisci, Rossiter, and Zappa (2004), Good-
win, Seron, and De Dona (2005), Lazar, Heemels, Roset, Nijmeijer,
and van den Bosch (2008), Mayne et al. (2000), Magni and Scat-
tolini (2006) and Pin, Raimondo,Magni, and Parisini (2009)). In this
paper, κ will be approximated over a compact set X ∈ F . An im-
portant theoretical issue to be addressed in the approximation of
κ concerns the capability to provide a guaranteed approximation
accuracy and the evaluation of the effects of the approximation on
the closed loop stability properties. In Canale et al. (2009, 2010)
and Canale, Fagiano, Milanese et al. (2010) it has been shown that,
in the context of SM approximation theory, it is possible to derive
an approximated control law κSM, based on the preliminary off-line
computation of a finite number ν of nominal control moves, that
enjoys the following three properties:

κSM :X → U (4a)

|κ(x) − κSM(x)| ≤ ζ < ∞, ∀x ∈ X (4b)
lim

ν→∞
ζ = 0. (4c)

Properties (4a)–(4c), namely satisfaction of input constraints,
bounded approximation accuracy with a finite bound ζ and con-
vergence of ζ to zero, have been proved to be sufficient to be able to
achieve closed loop stability and guaranteed regulation precision
when the function κSM is employed for feedback control (Canale
et al., 2009). However, the above-mentioned results rely on the as-
sumption of continuity of κ in addition to its stabilizing properties,
while it is known that, depending on the system model, the con-
straints and the chosen objective function, the nominal NMPC law
may be discontinuous. In this case, in general, it is not possible to
achieve the key property (4c), unless some other information on
the discontinuities of κ is available. Moreover, the absence of prop-
erty (4c) may lead to instability or to a reduction of the region of
attraction for the origin of the closed-loop system. This conceptwill
be illustrated in the next section, through a motivating example.

3. A motivating example

Consider the following system model:

xt+1 = axt + [bs(xt) + c]ut (5)

where xt , ut ∈ R, s(xt) = −1 if xt < 1 and s(xt) = 1 if xt ≥ 1.
Consider the NLP (2) with U = ut|t , cost function J(U, xt) =

x2t+1|t + R u2
t , R > 0, and the stabilizing constraint g(xt , ut) ≤ 0,

with g(xt , ut) = x2t+1|t − α x2t , α ∈ (0, 1) (contraction constraint).
The contraction constraint ensures closed loop stability and it
can be easily noted that a Lyapunov function for the closed loop
system is V (x) = x2. For any given value of xt , the cost and
constraint functions are convex (quadratic) functions of ut . Thus,
the Karush–Kuhn–Tucker (KKT) conditions (see e.g. Nocedal and
Wright (2006)) are sufficient for global optimality. Assuming that
a = 5, b = 1, c = 0.5, R = 2, α = 0.81, by imposing the KKT
conditions the following explicit optimal control law is obtained:

κ(xt) = −
4.1

s(xt) + 0.5
xt . (6)

Function κ (6) is clearly discontinuous at xt = 1, however let
us assume that this information is not available for the approxi-
mation. Assume now that the approximation of κ has to be car-
ried out on the set X = [−0.5, 1.5], and consider the following
ν = 8 nominal control values as part of the prior information on
κ : ũ = {κ(x̃) : x̃ ∈ Xν}, where Xν = {−0.50, −0.24, 0.02, 0.28,
0.54, 0.80, 1.06, 1.32}. Moreover, consider the Nearest Point (NP)
approximation (see e.g. Canale et al. (2009)) of function (6), i.e.
κNP(x) = κ(x̃NP),where x̃NP = argminx̃∈Xν ‖x − x̃‖2. The nominal
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