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A multi-level spatial optimization (MLSOPT) approach is developed for solving complex watershed scale
optimization problems. The method works at two levels: a watershed is divided into small sub-
watersheds and optimum solutions for each sub-watershed are identified individually. Subsequently
sub-watershed optimum solutions are used for watershed scale optimization. The approach is tested
with complex spatial optimization case studies designed to maximize crop residue (corn stover) harvest
with minimum environmental impacts in a 2000 km? watershed. Results from case studies indicated
that the MLSOPT approach is robust in convergence and computationally efficient compared to the
traditional single-level optimization frameworks. The MLSOPT was 20 times computationally efficient in
solving source area based optimization problem while it was 3 times computationally efficient for
watershed outlet based optimization problem compared to a corresponding single-level optimizations.
The MLSOPT optimization approach can be used in solving complex watershed scale spatial optimization

SWAT model problems effectively.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Spatial optimization of land use and conservation practices
under various objective functions/constraints can help sustainably
manage limited resources available in a watershed. Spatial opti-
mization of agricultural best management practices (BMP) has been
done by many researchers to identify the best locations and prac-
tices within a watershed with minimum implementation cost and
maximum economic and/or environmental returns (Srivastava
et al, 2002; Bekele and Nicklow, 2005; Arabi et al, 2006;
Maringanti et al., 2011; Lautenbach et al., 2013; among many
others). However, most of these studies were limited to research
problems with minimum practical implementation. In addition,
most were conducted in relatively smaller watersheds or in
simplified model representation where the search space for
optimal solutions is relatively smaller resulting in efficient imple-
mentation of the optimization algorithms.

The most popular method of spatial optimization is dynamic
linking of a watershed simulation model with an optimization
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algorithm (Srivastava et al., 2002; Bekele and Nicklow, 2005; Arabi
etal., 2006; Lautenbach et al., 2013; Kalcic et al., 2014; among many
others), wherein the simulation model outputs are used to estimate
the objective functions for the optimization algorithm. A major
limitation of this approach is the computational cost associated
with model dynamic simulations. Generally, spatial optimization
problems require tens of thousands of model simulations which
can take several days or even weeks to complete (Arabi et al., 2006).
Parallel computing could be one solution to reduce the computa-
tional time (Rouholahnejad et al., 2012; Wu et al., 2013; Zhang et al.,
2013; Yalew et al.,, 2013; Joseph and Guillaume, 2013), but often
parallel computing facilities available to model users are limited.
Another solution would be to select computationally efficient
watershed simulation models for objective function evaluations.
However, spatial optimization requires distributed-parameter
watershed models to simulate spatial variability of hydrologic/
water quality processes and such models are generally computa-
tionally complex. Computational costs associated with use of
complex models have resulted in innovative approaches of using
surrogate models (Sreekanth and Datta, 2011) or lookup tables
(Maringanti et al., 2009, 2011; Gitau et al., 2004) instead of direct
usage of simulation model in optimization framework. In such
applications a computationally simple surrogate model or look-up


Delta:1_given name
Delta:1_surname
mailto:ichaubey@purdue.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2014.12.014&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2014.12.014
http://dx.doi.org/10.1016/j.envsoft.2014.12.014
http://dx.doi.org/10.1016/j.envsoft.2014.12.014

2 R. Cibin, I. Chaubey / Environmental Modelling & Software 66 (2015) 111

table (also called pseudo-simulation models, Sudheer et al., 2011) is
created using a few scenarios simulated from watershed models
and these pseudo simulation models are linked with an optimiza-
tion algorithm. This approach makes the optimization computa-
tionally efficient by considerably reducing the time to reach
optimal solution (Maringanti et al., 2009; Sreekanth and Datta,
2011). However, a major limitation of this approach is that surro-
gate models can induce another level of uncertainty to the opti-
mization results (Sreekanth and Datta, 2011) as they are much
simpler representation of the behavior of complex natural systems.

Selection of an efficient optimization algorithm is also critical in
spatial optimization for efficient solution convergence. Evolu-
tionary optimization methods such as genetic algorithms (Holland,
1975; Goldberg, 1989) are popular in spatial optimization
(Chatterjee, 1997; Srivastava et al., 2002; Veith et al., 2003; Gitau
et al, 2004; Arabi et al., 2006; Maringanti et al., 2009, 2011;
Lautenbach et al., 2013; among many others). Even efficient opti-
mization algorithms may fail to converge when applied to large and
complex watersheds. Testing of convergence is difficult since the
true optimum solutions are often unknown. One method to test
convergence is to perform multiple replications of the optimization
using the same or different optimization algorithms and comparing
their results. Comparing solutions from many optimization algo-
rithms is more robust than multiple replicates using the same al-
gorithm as the former approach can potentially reduce chances of
converging to a local minimum. To the best of our knowledge no
such efforts are reported in spatial optimization convergence
testing, perhaps due to the computational cost of optimization.
Multi-algorithm optimization methods are known to be more
efficient than a single optimization algorithm. For example, Multi
ALgorithm Genetically Adaptive Method (AMALGAM) (Vrugt and
Robinson, 2007) is a multi-algorithm optimization method and is
reported to be more efficient than a single algorithm optimization
in watershed simulations (Vrugt and Robinson, 2007; Zhang et al.,
2010). The method uses four widely used optimization algorithms,
including the Non-dominated Sorted Genetic Algorithm II (NSGAII)
(Deb et al., 2002), particle swarm optimization (PSO) (Kennedy and
Eberhart, 2001), adaptive metropolis search (AMS) (Haario et al.,
2001), and differential evolution (DE) (Storn and Price, 1997).

Our efforts to compare efficacy of single and multi-algorithm
optimization methods for a complex spatial optimization case
study indicated that all test cases converged to below optimum
solutions and/or failed to search within the full search space. This
may be primarily due to the complexity of the search space. With
efforts to reduce search space complexity and drawing inspiration
from the notion of dividing and reducing complexity, we introduce
a new spatial optimization approach in this study. This novel
optimization approach is developed for complex spatial optimiza-
tion problems with a multilevel optimization concept, which we
refer to as Multi-Level Spatial Optimization (MLSOPT). This method
splits the optimization problem into more reasonably-sized sec-
tions by dividing a large watershed into small sub-watersheds. This
manuscript presents the MLSOPT algorithm and compares the
approach with multiple single-level spatial optimizations using
complex spatial optimization case studies. The objectives of this
study were to (1) evaluate performance of single-level spatial
optimization test cases using NSGA-II, PSO, and AMALGAM for
complex spatial optimization case study, (2) develop a computa-
tionally efficient optimization approach for watershed scale spatial
optimization, and (3) evaluate performance of the proposed
MLSOPT approach with single-level spatial optimization.

2. Methodology

The MLSOPT approach dynamically links a watershed simulation model with an
optimization algorithm, where the simulation model estimates objective functions

for the sample populations generated by the optimization algorithm. The proposed
approach is tested with two complex case studies to spatially optimize corn stover
removal rates for maximum biofuel production having minimum environmental
impacts in a 2000 km? watershed (Wildcat Creek watershed, Fig. 1). Case study 1
was designed to minimize environmental impacts at source area scale with objective
function to minimize erosion from the source agricultural fields. Case study 2 was
designed to minimize pollutant loading at a specific point in the stream with
objective function to minimize sediment loading at watershed outlet. The Soil and
Water Assessment Tool (SWAT) was used in the study as the watershed simulation
model to represent corn stover removal and to quantify biomass production and
associated environmental impacts such as erosion from agricultural fields and
sediment load at watershed outlet. The model is developed for the Wildcat Creek
watershed with about 922 corn/soybean areas from where stover harvest is possible.
The first optimization case study was done with single-level optimization using
three popular optimization algorithms and resulting optimum solutions were
compared. The three optimization algorithms included: (1) Non-dominated Sorting
Genetic Algorithm-II (NSGA-II); (2) Particle Swarm Optimization (PSO); and (3) A
Multi ALgorithm Genetically Adaptive Method (AMALGAM). The MLSOPT approach
with AMALGAM optimization algorithm was then compared with these three test
cases to evaluate the robustness of the proposed approach. Case study 2 compared
single-level optimization and MLSOPT approach with AMALGAM as optimization
algorithm.

2.1. Spatial optimization approach: MLSOPT

Spatial optimization at the watershed scale is inherently complex, computa-
tionally expensive, and can potentially fail to converge to an optimum solution in a
large and complex search space. The proposed approach consists of two spatial
levels of optimization that are performed sequentially. The first level divides the
watershed into smaller sub-watersheds, each consisting of multiple field units.
Optimum solutions for individual sub-watersheds are identified using the optimi-
zation algorithm and watershed simulation model. The complexity of the optimi-
zation problem is reduced significantly with sub-watershed level optimization. For
example, if the watershed has 50 sub-watersheds and each sub-watershed has 20
field units, which can each have 4 decision options such as four stover removal rates,
the complexity is reduced from 4'°°° with watershed scale single-level optimization
to 4% with sub-watershed level optimization. The individual sub-watershed opti-
mum solutions are further optimized in the second level of MLSOPT to identify
watershed scale optimum solutions. At the second level only the optimal solutions
from each sub-watershed is selected which considerably increases the optimization
efficiency. If the size of individual sub-watershed Pareto-front is 100, then the
complexity of second level is 100°°. Thus the total complexity of MLSOPT in two
levels is sum of 42 and 100°°, which is very small compared to single-level
complexity. The approach is designed to (i) reduce the optimization complexity by
splitting watershed in to smaller units, such as sub-watersheds, and identifying
optimum solution individually for each sub-watershed, (ii) reduce the computa-
tional expense by parallel optimization of all sub-watersheds simultaneously, and
(iii) identify watershed scale optimum solutions with the second level optimization
using optimum solutions from individual sub-watersheds.

Fig. 2 depicts the flowchart of the MLSOPT spatial optimization approach. The
approach begins with an initial population created from the search space, with Latin
Hypercube Sampling in this study. Each sample in the population denotes a feasible
spatial combination and is simulated using the watershed simulation model.
Objective functions (OF; — 1:n0bj, nsub) and constraints (Cj — 1:nConst, nsub) are estimated
for individual sub-watersheds (1:nsub) from model simulation. Initial sample and
corresponding objective functions and constraints for each sub-watershed are
linked with the individual optimization algorithm to create a next generation
offspring sample for the sub-watershed. The same step is done for all sub-
watersheds in parallel and the offspring samples (Newsamplej — 1:nsub) are
merged together to create a new sample population for the watershed, as shown in
Fig. 3. In effect, one sample for ‘nsub’ sub-watersheds requires only one model
simulation and this reduces the computational cost significantly. This process is
continued until the user defined termination criteria are satisfied for this level. This
provides optimum solutions for individual sub-watersheds as Pareto-optimal fronts
(a set of compromised trade-off solutions with multiple conflicting objective func-
tions) of objective functions.

For the second level of optimization, a lookup table is created with equally
spaced optimal solutions from individual sub-watershed Pareto-optimal fronts
generated from the first level of optimization. The optimization algorithm is then
linked to this lookup table to find watershed level optimum solutions. This approach
reduces the second level optimization search space to only combinations of best
solutions from individual sub-watershed, thus improving the efficiency of optimi-
zation. For source area based optimization problems (e.g. to minimize erosion from
all agricultural fields as in Case Study 1), a lookup table can be created with first-
level optimal solutions and corresponding objective functions. Then the second
level objective function can be evaluated as summation or average of sub-watershed
objective function directly from this table without a need to run the watershed
model again. For example, objective function of total erosion from watershed is
cumulative of erosion from all sub-watersheds. For watershed outlet based
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