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a b s t r a c t

It is widely acknowledged that uncertainty needs to be accounted for in climate impact studies, be it in
scenario analyses or optimization applications. In this study we investigate how climate and crop model
uncertainties affect multi-objective optimization outputs aiming to identify optimum agricultural
management adaptations for Western Switzerland. Results are visualized by ternary plots that map
optimum management measures, crop yield, erosion and leaching with associated uncertainties for
navigating through the optimum adaptation space. We find that the relevance of climate model vs.
parameter uncertainty can differ substantially depending on the prioritization of objectives and local
conditions. The optimum choice of irrigation level was found to be the decision variable subject to
greatest uncertainty particularly on coarser soil. This finding suggests that for the long-term planning of
irrigation infrastructure and management, a robust adaptation approach is required for approaching
unavoidable uncertainty from a risk management perspective.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With climate change, shifts in the conditions for agricultural
production are expected (Olesen and Bindi, 2002; Ewert et al.,
2005; Jaggard et al., 2010; Gornall et al., 2010). Adaptation mea-
sures are required to prevent negative impacts and to exploit
emerging new potentials (Salinger et al., 2000; Falloon and Betts,
2010; Jarvis et al., 2011; Olesen et al., 2011). For the planning of
such measures, possible impacts of uncertain future climate con-
ditions must be anticipated. The scope for adaptation has mostly
been investigated in model-based scenario analyses by testing
impacts of climate change with or without different adaptation
possibilities (e.g. Cho et al., 2012; Osborne et al., 2013). Alternative
approaches such as the one by Klein et al. (2013) and Lehmann and
Finger (2014) use optimization in combination with biophysical
simulation models to identify most effective combinations of
adaptation measures. These approaches have shown potential to
inform the planning of agricultural adaptation strategies since they
provide the advantage of systematically searching through a large
space of possible combinations of adaptation options.

It is widely acknowledged that uncertainty (e.g. in model inputs,
parameters and model structure of climate and impact models)
needs to be accounted for in impact studies for decision support
(Uusitalo et al., 2015). This is usually done by using model en-
sembles including multiple climate scenarios (i.e. projections from
different models and for different emission scenarios), cropmodels,
or crop model parameter sets (e.g. Challinor and Wheeler, 2008;
Ruiz-Ramos and Minguez, 2010; Ceglar and Kajfez-Bogataj, 2012;
Gouache et al., 2013; Hoffmann and Rath, 2013). For studies that
aim to identify optimum adaptation strategies, the consideration of
uncertainty is as important, but evermore challenging given the
increased computational effort involved in optimization as opposed
to scenario-based studies. Jakoby et al. (2014) applied a multi-
objective optimization to identify robust optimum rangeland
management strategies with respect to a series of synthetic climate
scenarios. Klein et al. (2013) accounted for uncertainty in climate
projections in a multi-criteria optimization approach and identified
robust optimum management adaptations with regard to a worst
case climate projection. Similar approaches of robust optimization
have been applied in other contexts such as the evaluation of
agricultural innovation (Doole, 2012), irrigation planning (Crespo
et al., 2010; Dai and Li, 2013; Sabouni and Mardani, 2013), for
scheduling grape harvesting (Bohle et al., 2010) or for water supply
management (Chung et al., 2009; Kasprzky et al., 2013).* Corresponding author. Tel.: þ41 (0)44 377 75 16.
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However, to our knowledge the propagation of different sources
of uncertainty from model simulations to optimization results has
not been investigated so far. Simulation model uncertainty affects
the multi-objective optimization results in terms of (i) estimates of
the multiple objective values in the objective space and (ii) the set
of decision variables that are selected as optimum from the decision
space. The objective space is defined here as the space of possible
objective values given different prioritizations of the objectives
included in the goal function, while the decision space is the cor-
responding space of possible decision variables. In multi-objective
decision problems e which are common in the context of envi-
ronmental management e different sources of uncertainty may
have different effects on optimization results (objective and deci-
sion variables) depending on the location within the Pareto-
frontier. A Pareto-frontier consists of a set of optimum solutions
to a multi-objective optimization problem, where the performance
with regard to one objective cannot be improved without reducing
the performance of another objective. In a regional context, the
effects of uncertainties on impact estimates can differ further
depending on local conditions and on the choice of management.

For the planning of adaptationmeasures, it is not only important
to quantify uncertainty in impact estimates, but it can be of even
greater value to identify the conditions under which uncertainty
has the largest impacts on the selection of decision options for
optimum adaptation, since these are the conditions under which
the identification of robust measures and maintenance of adaptive
capacity is most relevant (Ascough et al., 2008).

We therefore investigate the following question in a case study
application: How does uncertainty in model simulations propagate to
uncertainty in the Pareto-optimal objective and decision spaces of
multi-objective optimization results?

2. Study area & data

The question is investigated in a region in Western Switzerland
around the city of Payerne, where arable farming plays an impor-
tant role with the major crops being winter wheat (~30%), silage/
grain maize (~15%), winter barley (~9%), sugar beet (~7%), winter
rapeseed (~5%), and potato (~5%) (FOAG, 2011). Irrigation is com-
mon practice for potato, sugar beet and maize and the demand for
irrigation is expected to increase with climate change (Klein et al.,
2013). At the same time water availability from the Broye river e
the major source of irrigation water in the region e is expected to
decrease (Fuhrer and Jasper, 2012). Trade-offs between agricultural
functions (i.e. productivity, soil protection and groundwater pro-
tection) have been identified in this region and are likely to
aggravate with climate change (Klein et al., 2013). Legal restrictions
may be applied to avoid the overuse of water in the future, for
example by introducing water quotas (Lehmann and Finger, 2014).

Soil information for the study region was derived from the Soil
Suitability Map of Switzerland (1:200.000; BFS, 2012) and adjusted
according to soil profile information from the Swiss Soil Monitoring
Network (BUWAL, 2003). We consider sandy loam (65% sand, 25%
silt, 10% clay) and loam (40% sand, 40% silt, 20% clay), which are two
most common soil types in this region according to these data
sources.

To represent climate model uncertainty, climate change signals
were extracted for climate projections from two different GCM-
RCM model chains (HadCM3Q0-CLM, HadCM3Q3-RCA assuming
emission scenario A1B) applied within the ENSEMBLES project
(Hewitt, 2005) for the time horizon 2036e2065. The stochastic
weather generator LARS-WG (Semenov and Barrow, 1997) was
applied to downscale these climate change signals to the location of
the meteorological station Payerne. LARS-WG was first trained
based on observed daily data for the period 1981e2010

(MeteoSwiss). In a second step the statistical properties derived
from observed data were modified according to the extracted
climate change signals to generate 20 individual years of synthetic
daily weather data for each of the two climate projections. Ac-
cording to the two institutions operating the climate model chains,
our two projections are named ETHZ (HadCM3Q0-CLM) and SMH
(HadCM3Q3-RCA) hereafter. They cover approximately the upper
and lower limits of temperature and precipitation changes pro-
jected for the study region in CH 2011 (2011) for the time horizon
2045e2075 under the A1B scenario.

3. Methods

3.1. Approach

In a first step, the crop model CropSyst (St€ockle et al., 2003) is applied to
simulate climate impacts on yields, soil loss and nutrient leaching based on ten
parameter sets representing crop model parameter uncertainty (Fig. 1). This simu-
lation experiment follows a balanced factorial design, where impacts are simulated
for all combinations of parameter sets, climate projections, management options
and site conditions (i.e. soil types). Variance partitioning of simulated results is
applied to identify contributions of climate model and impact model parameter
uncertainty in relation to effects of management and soil conditions. This first step
allows to identify effects of uncertainty in climate projections and crop model pa-
rameters on impact estimates in relation to management and site effects.

Based on the simulation results, in the second step, a multi-objective optimi-
zation is applied to identify optimum combinations of management decisions for
each climate projection, parameter set and soil type. The full space of possible
optimization solutions is estimated by applying systematically varying combina-
tions of weights to the three objectives (productivity maximization, erosion mini-
mization and leaching minimization) given a constraint on water consumption for
irrigation. Since the model system is strongly nonlinear, it can be expected that
effects of model uncertainty on optimization outputs differ depending on the pri-
oritization of different optimization objectives. Standard deviations estimated over
the 20 optimization runs (2 climate projections � 10 parameter sets) represent
uncertainty in optimization outputs. Variance partitioning of optimization outcomes
for all considered weight combinations reveals how robust the optimization results
are with respect to climate model and impact model parameter uncertainty,
depending on the choice of weights and site conditions (¼ uncertainty partitioning).

3.2. Impact model setup

We apply the generic crop model CropSyst (St€ockle et al., 2003) to simulate
effects of climate, agricultural management and site conditions on yields, soil loss
and nutrient leaching. Ten model parameter sets are generated based on different
realizations of the automated stochastic calibration procedure for the main arable
crops winter wheat, winter barley, winter rapeseed, sugar beet, grain maize and
potato (Klein et al., 2012). In a first step of this procedure, a parameter screening
identifies most sensitive crop parameters and in a second step these parameters are
automatically adjusted within a predefined range of realistic values until simulation
model performance converges (performance measures achieved with the calibra-
tions are shown in Table 1). Willmott index of agreement (Willmott, 1981) is used as
the performance measure for the automated calibration since it accounts for dif-
ferences in modeled and observed means and variances and also considers the
model's ability to preserve the data pattern within yield time series, which is a
particularly relevant feature for crop models (Bennett et al., 2013). Visual inspection
of simulated and observed yield time series and additional performance measures
were used to check calibration results for over-/underestimation (bias) and mean
deviation (Root Mean Square Error, RMSE). Since the calibration procedure is sto-
chastic, it generates different parameter sets with similar performances with each
repeated application. The 10 parameter sets, thus, represent crop model parameter
uncertainty originating from model equifinality.

Eight different 5-year crop rotations were defined, which are set up by six crops
to capture the effects of crop rotation choice on the variability of yields, erosion and
leaching. The order of crops in the rotations was sampled randomly and only
accepted if the rotation was feasible in terms of recommended maximum crop
shares and pre-crop suitability described in Vullioud (2005). A cover crop was added
to a crop rotation if harvest occurred before August, 31st and the following crop was
not a winter crop. For each rotation different management possibilities were
applicable as summarized in Table 2.

3.3. Model simulations and variance partitioning

Given the two different climate projections, 8 rotations with 10 parameter sets,
two irrigation options, three fertilization options, and two tillage options on two soil
types (sandy loam, loam), 3840 combinations are possible (2*8*10*2*3*2*2 ¼ 3840).
CropSyst was set up as described in Klein et al. (2014) and run for all these com-
binations of model inputs over 20 years and outputs on annual yields, soil loss,
erosion and water consumption for irrigation were stored. All simulated outputs
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