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a b s t r a c t

We propose a nonconventional application of variogram analysis to support climate data modelling with
analytical functions. This geostatistical technique is applied in the theoretical domain defined by each
model variable to detect the systematic behaviours buried in the fluctuations determined by other
driving factors and to verify the ability of candidate fits to remove correlations from the data. The cli-
matic average of the atmospheric temperature measured at 387 European meteorological stations has
been analysed as a function of geographical parameters by a step-wise procedure. Our final model ac-
counts for non-linearity in latitude with a local-scale residual correlation that decays in approximately
ten kilometres. The variance of the residuals from the fitted model (approximately 3% of the total) is
mostly determined by local heterogeneity in transitional climates and by urban islands. Our approach is
user-friendly, and the support of statistical inference makes the modelling self-consistent.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent satellite remote sensing technologies for Earth Obser-
vation (EO) have supplied a large amount of spatial data that are
promising for improving our understanding of the climate system.
Contextually, the sparse and uneven data provided by ground sta-
tions are still an essential source of information on many key var-
iables characterizing climate dynamics. Currently, the collection of
data obtained from meteorological networks, which are generally
regarded as valid for spatial inferences of the state of the low at-
mosphere (Geiger et al., 2003), are also usedwithin climatic studies
at the planetary scale. As an example, the series of global datasets,
HadCRUT, gridded on a 5� � 5� latitudeelongitude box grid, has
been widely exploited for the evaluation and attribution of climate
change (e.g., Brohan et al., 2006; Jones and Stott, 2011; Jones et al.,
2012).

Multi-resolution, both in time and in space, provides the stan-
dard hierarchical framework for studying the dynamics of the
climate system. Because details at different resolutions generally
characterize different physical structures, a coarse-to-fine
descriptive strategy is used to separate the broad scale context

that is properly climatic from the local contexts of weather
dynamics.

In regional studies, numerical models (Rummukainen, 2010;
Feser et al., 2011) add details to global-scale climate models, thus
improving simulations and forecasts. Within projects focused on
long-term simulations or projections, Regional Climate Models
(RCMs) currently operate at horizontal grid resolutions between 25
and 50 km [e.g., PRUDENCE (Christensen and Christensen, 2007),
ENSEMBLES (Hewitt, 2005) and NARCCAP (http://www.narccap.
ucar.edu/)]. On the whole, there is an increasing demand of fine-
scale data (e.g., Jeffrey et al., 2001; Huld et al., 2006; Hancock and
Hutchinson, 2006; Daly et al., 2008; Tang et al., 2012) that can be
useful to understand any environmental process linked to climate.
Within the proper climatic context, a horizontal resolution of
7e10 km is currently recognized as a good target (e.g., Suklitsch
et al., 2011).

Our research activity (e.g., Lanfredi et al., 2004; Simoniello et al.,
2008, 2011) examines complex processes linking climate and the
land surface (Piao et al., 2006; Cleland et al., 2007; Prieto-Blanco
et al., 2009). Such studies use remote sensing observations of
land and require realistic and accurate climatic surfaces obtained by
interpolating data from meteorological stations to be interfaced
with remote information. In particular, we need to construct air
temperature surfaces that can be linked to land surface maps to
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better understand biosphere spatio-temporal patterns and
to characterize exchange processes (e.g., carbon emis-
sioneabsorption) that actively involve climatic fluctuations (e.g.,
Cox et al., 2000; Yuan et al., 2010).

Surface data are mostly obtained by the pure interpolation of
sampled observations (e.g., by Thin Plate Smoothing Splines;
Hopkinson et al., 2012). More complex strategies combine human-
expert knowledge and statistical methods to satisfy the increasing
demand for spatial climate data sets in digital form (Daly et al.,
2008). All of these methodologies directly supply end-users with
gridded data; the underlying physical mechanisms that shape the
climatic surfaces are not singled out and thus remain encapsulated
within the complexity of the gridding algorithms. Nevertheless,
modelling the relationships between a given variable and the fac-
tors that generate its spatial patterns is crucial in many scientific
frameworks. In our case, we have to consider that the spatial
variability of both the land surface and low atmosphere variables is
influenced by geography and topography. Any study focussing on
fluctuations generated by mutual interactions between these two
environments needs to discriminate geographic-induced back-
ground patterns that could distort correlation analyses.

This requirement led us to work on the development of a
regressive approach that can account for causal linkages between
geographic factors and temperature. General non-linear regression
implies that functional form selection, estimation of best-fit pa-
rameters, and evaluation of fit performances are rather difficult. In
contrast to linear regression, there is no closed-form expression for
the best-fitting parameters and departures from the optimal
approximation can occur, which could not be accounted for by
global cost functions and require weighty goodness-of-fit tests
(Caouder and Huet, 1997; Crainiceanu and Ruppero, 2004;
Demidenko, 2006).

Here, we focus on a simpler approach by developing an additive
regression model that is non-linear in the explanatory variables.
The ability of such a model to generate random errors starting from
spatially structured patterns can be considered as an a posteriori
criterion to evaluate its performance. The main idea of our proposal
is that we can use variogram analysis (Cressie, 1993; Wackernagel,
2003) to characterize the scale properties of the response variable
along pseudo-directions that are defined by the explanatory vari-
ables of the model within an identificationeestimation-checking
iterative approach to model building. This analysis can be particu-
larly useful in the diagnostic checking phase to verify the ability of
the fit to remove correlation structures from the data and thereby
randomize residuals from the fitted model (“whitening”). Efficient
best fits should flatten the variogram at the right variance level;
improper best fits should result instead in residual correlation be-
tween the response and explanatory variables over large scales.
This validation is also important because it enables us to evaluate if
the prediction error is actually the minimum allowed by the
intrinsic degree of randomness of the data. Rigorously speaking,
long-range correlation could also be observed in the case of fractal
data, but this peculiar circumstance is recognizable due to the
typical power law dependence that characterizes them (e.g., Brown
and Liebovitch, 2010). Thus we are limited to consider determinism
against stationary randomness. Of course, differently from the
standard geostatistical applicative framework, the model variables
are not necessarily spatial coordinates.

We illustrate our strategy by building up a geographical model
for the climatic average of atmospheric temperature over Europe.
Data from 387 meteorological stations were recorded over the 30-
year period from 1961 to 1990, where the latest global “Normals”
are currently defined for climate reference (http://www.wmo.int/
pages/themes/climate/statistical_depictions_of_climate.php) ac-
cording to the World Meteorological Organization. Although air

surface temperature is one of the most continuous and studied
variables within climate analyses, not only its deep dynamical
features in time are still discussed (e.g., Lanfredi et al., 2009 and
references therein) but also in truly applicative contexts there is no
single strategic approach to the modelling, as observed above for
climatic variables in general. We refer to the 8 km � 8 km resolu-
tion of the GIMMS-AVHRR (Global Inventory Modelling and Map-
ping Studies-Advanced Very High Resolution Radiometer) data,
which are usually exploited for monitoring land cover in climatic
studies (e.g., Zeng et al., 2013). This resolution corresponds well to
the typical finest scales of RCMs (e.g., Suklitsch et al., 2011) and, as it
will be shown in the following, emerges naturally from scale ana-
lyses as a reasonable boundary between locality and globality. The
main variables shaping the basic structural part of the spatial
variability of near-surface temperature at that resolution in a cli-
matic context are latitude, longitude and elevation. We have also
included the distance from the coastline to illustrate our approxi-
mation process step by step. The final part of the paper concerns a
detailed discussion of the residuals from the fitted model and the
comparison between the performances of our model against a
standard multi-regressive linear model.

2. Data and study area

The annual mean air temperature data concerning the 30 years
climatic period from 1961 to 1990 were obtained from 387 mete-
orological stations located in the European part of the Eurasian
continent (Fig. 1) by averaging daily data. Most of the data were
provided by the European Climate Assessment & Dataset (ECA&D)
project (Klein-Tank et al., 2002); few stations (<2%) were integrated
from local databases to introduce additional information in poorly
represented areas.

Differences in latitude and elevation are expected to play a
major role in determining the mean annual value of the air tem-
perature, but the longitude and distance to the sea could also be
significant parameters. In particular, from the point of view of
general atmospheric circulation, the investigated area falls in the
Ferrel cell of the Northern hemisphere where prevailing winds are
westerlies. Because the west coast of Europe is located on the
Atlantic Ocean, whereas the eastern part is continental, the west-
erlies move hot air masses inland from the sea in the direction of
increasing longitude during winter. As a consequence, non-
stationary behaviours are expected in the West(Sud)/East(Nord)
direction. This variability should prevalently concern annual ex-
cursions, but the annual mean values could also be affected.
Moreover, sea proximity, in general, modifies the minimum tem-
perature in coastal swaths, which is why this parameter is included
in the set of geographical parameters potentially involved in
determining air temperature spatial variability.

3. Method

3.1. Variogram analysis

In this Section, we provide some basic definitions and concepts concerning the
variogram analysis (for a detailed discussion see Cressie, 1993).

If Z(s) is a regionalized stationary variable with a constant mean m and variance
s2 in a d-dimensional Euclidean space D, the quantity 2gð:Þ, which has been called a
variogram by Matheron (1962), is defined as:

2gðs1 � s2Þ≡varðZðs1Þ � Zðs2ÞÞ for all s1; s22D (1)

Due to the stationary assumption, this is a function of the increments
Ds ¼ s1 � s2 only and gðDsÞfs2 for large values of Ds asymptotically.

When the mean is assumed to be a constant, this equality holds:

varðZðsþ DsÞ � ZðsÞÞ ¼ EðZðsþ DsÞ � ZðsÞÞ2 cs;Ds (2)

where E(.) indicates the expected value, and we can estimate the variogram as:
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