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a b s t r a c t

Accurate forecasts of water demand are required for real-time control of water supply systems under
normal and abnormal conditions. A methodology is presented for quantifying, diagnosing and reducing
model structural and predictive errors for the development of short term water demand forecasting
models. The methodology (re-)emphasises the importance of posterior predictive checks of modelling
assumptions in model development, and to account for inherent demand uncertainty, quantifies model
performance probabilistically through evaluation of the sharpness and reliability of model predictive
distributions. The methodology, when applied to forecast demand for three District Meter Areas in the
UK, revealed the inappropriateness of simplistic Gaussian residual assumptions in demand forecasting.
An iteratively revised, parsimonious model using a formal Bayesian likelihood function that accounts for
kurtosis and heteroscedasticity in the residuals led to sharper yet reliable predictive distributions that
better quantifies the time varying nature of demand uncertainty across the day in water supply systems.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding natural variability in urban water demand, the
fundamental aleatory uncertainty affecting water supply systems
(Hutton et al., 2014a), helps water utilities to satisfy consumer
demand, whilst at the same time allowing them to try and mini-
mise the costs associated with supplying sufficient water. Over
decadal scales estimates of future water demand support strategic
planning, allowing utilities to understand potential water shortages
relating to climatic changes, and make capital investments in the
water distribution and treatment infrastructure to meet future
demand (Qi and Chang, 2011; Almutaz et al., 2013). At shorter time-
scales predicted water demand up to several days ahead forms a
key input to near real-time control systems, and can contribute
towards the reduction of energy consumption and cost associated
with supplying water in distribution networks (Martinez et al.,
2007; Bakker et al., 2013a). Furthermore, short term predictions

of urban water consumption are important for burst detection,
helping utilities to distinguish between actual demand and non-
revenue water (Mounce et al., 2010).

Existing short-term Water Demand Forecasting (WDF) research
(e.g. < 48 h), has mainly focussed on two aspects of the forecasting
problem: identification of the best inputs to predict future demand
e both endogenous and exogenous variables e and on identifying
the best model structures to map these input variables to predict
future demand (Adamowski, 2008; Herrera et al., 2010). Relatively
few approaches, however, have attempted to quantify the uncer-
tainty in demand forecasts over shorter timescales (Cutore et al.,
2008), despite the fact that water demand is highly uncertain due
to: (a) a range of difficult to constrain socio-demographic and
economic factors known to affect water consumption (Arbu�es et al.,
2003), which themselves vary both spatially and temporally; (b)
the fact that residential demand is often not fully metered (e.g.
<40% properties in the UK). Even when properties are metered,
often they are not read frequently enough to quantify short term
demand fluctuations. Demand uncertainty needs to be quantified
adequately as it will propagate adversely to affect the accuracy of
subsequently derive models, forecasts and control decisions
(Hutton et al., 2014a, 2014b). The relative performance of demand
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forecasting models has typically been evaluated and compared
with reference to global metrics of model performance such as Root
Mean Square Error (RMSE; e.g. Herrera et al., 2010) that summarise
model performance in an average sense over the whole dataset.
Such metrics reveal little information about how a model performs
poorly, where the key errors in model performance lie, and there-
fore provide little guidance upon how models may be improved.
Furthermore, the statistical assumptions upon which demand
forecasting model calibration that employs metrics such as RMSE is
typically based (e.g. independent, and identically distributed (iid)
Gaussian errors) are seldom reported, and therefore evaluated, in
the demand forecasting literature. This is despite the fact that it is
on the validity of these statistical foundations that the legitimacy of
any model comparison is based.

Building upon the work of Hutton et al. (2014a), who presented
a framework for considering the cascade of uncertainty frommodel
calibration, through forecasting, to real time control in Water
Supply Systems, this paper presents a probabilistic methodology
for the development and calibration of short water demand fore-
casting models. The methodology is designed to develop more
reliable short term WDF models, and provide quantitative infor-
mation on model predictive uncertainty to the decision maker. A
Bayesian approach is applied for model parameter calibration, and
subsequent posterior predictive uncertainty quantified probabilis-
tically. The framework emphasises the iterative application of re-
sidual error analysis during calibration, and evaluation of the
reliability and sharpness of the predictive distributions in order to
diagnose errors within the model structure and errors in the re-
sidual error assumptions made during calibration. Section 2 re-
views short termwater demand forecasting; Section 3 presents the
overall methodology, followed by a case study implementing the
methodology to forecast demand for 3 District Meter Areas in the
UK (Section 4); Sections 5 and 6 then discuss and conclude the
paper, respectively.

2. Short term water demand forecasting and model
development

Short term WDF modelling research has generally focussed on
identifying the best model inputs, and on identifying the best
models to combine these inputs and map them to predict future
water demand. Approaches have applied either endogenous vari-
ables e e.g. past values of water demand (Alvisi et al., 2007; Cutore
et al., 2008; Romano and Kapelan, 2014) e and/or exogenous var-
iables such as temperature and precipitation (Zhou et al., 2002;
Herrera et al., 2010; Adamowski, 2008). Unless past weather vari-
ables are used, temperature and precipitation variables may need
to be forecasted as inputs to the demand forecasting model, which
will contain additional uncertainty. Furthermore, as pointed out by
Bakker et al. (2013b) it may be difficult to include weather variables
reliably in a practical setting due to reliance on external systems.

A number of different data driven modelling approaches have
been applied for short term WDF including multi-linear regression
(MLR), Autoregressive (Integrated) Moving Average models (AR(I)
MA; Adamowski, 2008; Zhou et al., 2002), and non-linear methods
including multiple non-linear regression (MNLR; Adamowski et al.,
2012), Artificial Neural Networks (ANNs; Romano and Kapelan,
2014) and variants thereof including dynamic ANNs (Ghiassi
et al., 2008), Wavelet transform (WA-) ANNs (Adamowski et al.,
2012), and Support Vector Machines (SVM; Herrera et al., 2010).
A final class of models that may be considered more heuristic in
approach have structures built upon observations made from
exploratory data analysis. Such models share similarities with
ARMA approaches, and generally include a component represent-
ing the average behaviour of the system, such as an average of past

water demands (Herrera et al., 2010), and a persistence component
representing local deviations in time, which may be represented
through regression on recent prediction errors (Alvisi et al., 2007).
Bakker et al. (2013b) applied a heuristic approach in which nor-
malised water demands are used as input variables, and combined
with multipliers for the specific day of the week and time of day to
derive the forecast.

A number of papers have conducted comparative analysis be-
tween different data driven models. Adamowski et al. (2008) found
that ANNs outperform linear regression and ARIMA models for
peak daily water demand forecasting. SVM models have also be
found to outperform 5 other model structures for 1 h ahead de-
mand forecasts (Herrera et al., 2010), whilst WA-ANNs have been
found to outperform MLR, MNLR, AIRMA and ANN models for daily
water demand forecasting (Adamowksi et al., 2012). However, in
this latter approach wavelet transformed data could also be applied
as input to other model types. Whilst it is difficult to compare
different WDF methodologies in different contexts, Mean Absolute
Percentage Errors (MAPE) reported in the literature generally vary
from 3 and 10% for lead times up to 24 h (Bakker et al., 2013;
Romano and Kapelan, 2014; Alvisi et al., 2007), where the lowest
errors reported by Bakker et al. (2013b) were found in the larger
supply zones where deviant behaviour from the norm is more
likely to be masked by average behaviour.

The relative performance of different WDF models has been
judged mainly with reference to global metrics of model perfor-
mance like MAPE, including Root Mean Square Error (RMSE), and
Mean Absolute Error (MAE; Ghiassi et al., 2008; Herrera et al.,
2010). Such metrics, however, provide limited scope for compara-
tive analysis as they collapse all residual error information into a
single value, and can therefore only tell us how good models are in
an average sense. Gupta et al. (2008) argue that such metrics are
therefore weak in a diagnostic sense, as they reveal little infor-
mation about how and where within a simulation a model per-
forms poorly. Suchmetrics therefore provide limited information to
determine between competing models, and to guide subsequent
model improvement.

To overcome the problems of model evaluation solely with
global metrics, further investigation of the residual errors is
required. Such exploration is important for two reasons. First, it is
important to test the assumptions of Gaussianity, hetero-
scedasticity and independence of residual errors that are (implic-
itly) assumed during the model fitting exercise (Engeland et al.,
2005). This is particularly important as it is on these assumptions
that the validity of the model fit, and in turn the validity of any
subsequent model comparison, is based. Second, context specific
residual error analysis helps to identify how and where a model
performs poorly. Residual analysis, however, is not routinely
applied (or at least not fully reported) in the literature during WDF
model development.

A further need to analyse in more detail the residual errors is
that urban water demand is highly uncertain due to limited spatial
and temporal metering coverage, and also because of a range of
factors that influence water consumption (and leakage), which
themselves vary spatially and temporally (Arbu�es et al., 2003).
Water demand uncertainty is also the key aleatory uncertainty that
propagates into, and influences that accuracy of Water Distribution
System model predictions (Hutton et al., 2014a). However, despite
this uncertainty, and despite the wider application of uncertainty
quantification methods in Urban Water Systems' modelling
(Kapelan et al., 2007; Alvisi and Franchini, 2010; Hutton et al.,
2014a, 2014b; Breinholt et al., 2012; Deletic et al., 2012) and hy-
draulic/hydrological modelling more generally (Liu and Gupta,
2007; Beven, 2008), few approaches have moved beyond deter-
ministic WDF modelling. In a forecast setting, where models are to
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