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ABSTRACT

Estimation of spatial random fields (SRFs) is required for predicting groundwater flow, subsurface
contaminant movement, and other areas of environmental and earth sciences modeling. This paper
presents an inverse modeling framework called MAD# for characterizing SRFs, which is an imple-
mentation of the Bayesian inverse modeling technique Method of Anchored Distributions (MAD). MAD#
allows modelers to “wrap” simulation models using an extensible driver architecture that exposes model
parameters to the inversion engine. MAD# is implemented in an open source software package with the
goal of lowering the barrier to using inverse modeling in education, research, and resource management.
MAD# includes an intentionally simple user interface for simulation configuration, external software
integration, spatial domain and model output visualization, and evaluation of model convergence. Four
test cases are presented demonstrating the novel functionality of this framework to apply inversion in
order to calibrate the model parameters characterizing a groundwater aquifer.

Model integration
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Software availability

MAD# is made available through collaboration with the Con-
sortium of Universities for the Advancement of Hydrologic Science
(CUAHSI) Hydrologic Data Center. MAD# source code and docu-
mentation can be accessed at the MAD code repository website
http://mad.codeplex.com. MAD# and its source code are released
under the New Berkeley Software Distribution (BSD) License which
allows for liberal reuse of the software and code.

1. Introduction
1.1. Overview

Spatial phenomena variability is typically evaluated through
analytical and numerical models that describe the general

Acronyms: FM, Forward Model; FMD, Forward Model Driver; GIS, Geographic
Information System; MAD, Method of Anchored Distributions; MAD#, Method of
Anchored Distributions C# Program; pdf, Probability Density Function; RFG,
Random Field Generator; RFGD, Random Field Generator Driver; SRF, Spatial
Random Field.
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properties of spatial random fields (SRFs). These models employ
parameters and observations to define spatial variability. The
characteristics — and hence variability — of an SRF can be discerned
by the relationship between model parameters, direct, and indirect
information. A number of hydrogeological studies have been con-
ducted using SRF analysis (Delhomme, 1979; Carrera and Neuman,
1986; Dagan, 1987; Bates and Townley, 1988; Bellin and Rubin,
1996; Yeh et al., 2002; Kanso et al., 2003; Gallagher and Doherty,
2007; Farmani et al., 2008). This paper introduces an open source
inverse modeling framework, called MAD# (pronounced “mad
sharp”), focused on the characterization of SRFs using the Method
of Anchored Distributions (MAD), a Bayesian inverse modeling
technique (Rubin et al., 2010).

The process of estimating model parameters from the inversion
of governing equation(s) and observations is called inverse
modeling. For over fifteen years, researchers have advocated for the
development of flexible and easy-to-use inverse modeling tools,
with the understanding that the shortage of such tools hinders the
development of comprehensive and credible uncertainty quantifi-
cation tools (Poeter and Hill, 1997, 1999; Rubin, 2004; Dagan, 2011).
Carrera et al. (2005) identified five features that are needed for
broad adoption of inverse modeling tools in hydrogeology: 1)
incorporating geological data, 2) improving the flexibility of the
code and procedures to handle any and all relevant data types, 3) a
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complete quantification of uncertainty, 4) reducing the difficulty of
code operation, and 5) coupling inverse modeling techniques with
a geographic information system (GIS) platform.

A number of existing simulation model software tools include
model parameter estimation and uncertainty characterization as
embedded functions within the program. For example, WEAP
(Yates et al., 2005) and PMWIN (Chiang and Kinzelbach, 2001) both
are applications that use forward models (FMs) and model
parameter estimation software applications like PEST (Doherty,
1994). These and related software tools have aided adoption of
uncertainty characterization and inverse modeling to some degree.
However, we recognize a need for additional tools that provide a
more general set of capabilities and that address the issues raised
by Carrera et al. (2005).

MAD has been shown by Rubin et al. (2010), Murakami et al.
(2011), and Chen et al. (2012) to be a flexible stochastic inverse
modeling technique that addresses the first three challenges posed
by Carrera et al. (2005). Specifically, MAD can account for geology
(Challenge #1) via the representation of geological features
through SRFs modeled using structural parameters; handles mul-
tiple relevant data types (Challenge #2) through use of direct
measurements and measurements that are indirectly related to the
variable modeled; and accommodates uncertainty (Challenge #3)
by explicitly incorporating observation uncertainties and quanti-
fying uncertainty of geostatistical structural parameters and a new
concept called “anchors”.

1.2. Research goals

We have endeavored to address Carrera's Challenges #4 and #5
by implementing and testing MAD in an extensible, user-friendly
software framework. Specific goals for the developed framework
include:

1) It should be capable of generically accommodating FMs that
relate target variables with observations.

2) It also should be flexible in supporting the use of other user-
specified software packages for random field generators (RFGs).

3) It should be able to characterize the uncertainty associated with
SRFs.

4) It should be well documented and transparent with indepen-
dently verifiable results.

The remainder of this paper presents our approach to meeting
the research goals noted above in the form of an open source in-
verse modeling software framework called MAD#. This new in-
verse modeling application builds upon a prototype architecture
(Osorio et al., 2012), in which MAD was implemented as a Hydro-
Desktop (Ames et al., 2012) plugin using an embedded steady-state
head solver written in R statistical software. MAD# is a standalone
desktop application and includes an architecture for adding custom
random field generator drivers (RFGDs) and forward model drivers
(FMDs) for incorporating new models. We present an architectural
overview of MAD# and descriptions of drivers currently imple-
mented. We also present a demonstration of MAD# in two syn-
thetic pumping experiments using a MODFLOW (Harbaugh, 1996)
project created in the PMWIN MODFLOW interface (Chiang and
Kinzelbach, 2001).

The work presented here is related to an active area of research
and development within the broader context of integrated envi-
ronmental modeling in that our software framework is indeed a
method for “integrating” different modeling software packages into
a single cohesive environment. This approach is related to the
approach supported by as OpenMI (Castronova et al., 2013; Knapen
et al,, 2013). Ridler et al. (2014) follow a strikingly similar approach

to developing a data assimilation framework using OpenMI and an
open data assimilation library, using the C# programming lan-
guage. Another model integration framework that is rapidly
growing in adoption is the Community Surface Dynamics Modeling
System (CSDMS) which uses a “wrapper-style” common modeling
interface approach which is similar in nature and purpose to the
forward model driver approach we present herein (Overeem et al.,
2013; Castronova and Goodall, 2010).

It is worth noting that the OpenMI and CSDMS approaches both
presume the existence of software packages that implement
particular hydrologic or environmental numerical models. In other
words, these models exist as software packages that require specific
input and output files — not simply as conceptual mathematical
models. A somewhat different approach has been taken by inte-
grated modeling efforts such as The Object Modeling System (OMS)
which is suited to integrating small functions or codes that repre-
sent individual physical processes rather integrating large software
packages (David et al., 2013).

In comparison to the OpenMI and CSDMS integrated modeling
systems, our MAD# approach is relatively simple. Rather than
facilitating the transmission of inputs and outputs between various
numerical model packages, our approach focuses on a tightly
managed system of a single model package connected through a
single wrapper (or “driver”) directly to our inversion software. This
is much more manageable than the alternative of linking multiple
models to multiple models, and helps us avoid the challenges and
issues of the so-called “Integronsters” (Voinov and Shugart, 2013).

2. Methods
2.1. MAD theoretical background

Although a complete description of MAD is outside the scope of this paper, a brief
introduction to the method is presented here. MAD is a Bayesian inverse modeling
technique focused on characterizing SRFs by using Bayes' theorem and the following
concepts intended to address the challenges stated in the previous section:

e Geostatistical models are used to capture large-scale trends and reproduce
patterns of spatial variability in terms of SRFs.

Data classification — MAD classifies data (measurements) in a general format
that is not limited (or specific to) any particular discipline or application. MAD
categorizes data as:

o Type A data, zg=y(Xi) +€q, i = 1, ..., N, which could include direct measure-
ments (including measurement error ¢) of the target variables (e.g. hydraulic
conductivity) at location x;, i = 1, ..., N, or other types of measurements (e.g.
transmissivity) at x; that could be directly related to the target variable at x;,
Type B data, z, = M(x;) +ep, j = 1, ..., M, which include all measurements
(including measurement error ¢) that do not conform with Type-A, but are
related to the target variable via a forward model, M (e.g. pressure head)
Localization through anchored distributions (or “anchors”). An anchor is a sta-
tistical distribution of a target variable at a given location. Anchors can be
employed for multiple target variables and/or locations. Anchors intend to
capture local effects in the field of the target variables by conditioning re-
alizations on fields.

o

MAD defines a target variable as a SRF, which is represented by a vector of
geostatistical structural parameters (¢) capturing the global tendency, and anchors
(9) for quantifying local variations of the parameter field. MAD relies on the
following proportionality (Rubin et al., 2010).

p(8,92a,2p) *<p(8,9|2a) P(2p] 6,9, 2a) (1M

Where p indicates a probability density function (pdf) and p(6, ¥|z,) is the joint prior
distribution of the structural parameters and anchors conditional on Type-A data
vector zq, and p(zp| 0,9, 2q) is the likelihood of observing the Type-B data vector z,
given the structural parameters, anchors and Type-A data. Finally, p(, ¥|zq4, zp) is the
joint posterior distribution of the structural parameters and anchors conditional on
both Type-A and Type-B data.

2.2. MAD methodological approach

MAD is applied in three stages: 1) Strategy, 2) Implementation, and 3) Assess-
ment. These three stages are described in Fig. 1 and are discussed in depth in the
following three subsections.
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