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a b s t r a c t

The ability of biogeochemical ecosystem models to represent agro-ecosystems depends on their correct
integration with field observations. We report simultaneous calibration of 67 DayCent model parameters
using multiple observation types through inverse modeling using the PEST parameter estimation soft-
ware. Parameter estimation reduced the total sum of weighted squared residuals by 56% and improved
model fit to crop productivity, soil carbon, volumetric soil water content, soil temperature, N2O, and soil
NO3

� compared to the default simulation. Inverse modeling substantially reduced predictive model error
relative to the default model for all model predictions, except for soil NO3

� and NH4
þ. Post-processing

analyses provided insights into parametereobservation relationships based on parameter correlations,
sensitivity and identifiability. Inverse modeling tools are shown to be a powerful way to systematize and
accelerate the process of biogeochemical model interrogation, improving our understanding of model
function and the underlying ecosystem biogeochemical processes that they represent.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Software and data availability section

Software DayCent model
Developers W. J. Parton, S. J. Del Grosso, S. Ogle, K. Paustian,
Contact address Natural Resource Ecology Laboratory,

Colorado State University, Fort Collins, CO,
USA

Telephone (970) 491-2195
Email address century@colostate.edu
Year first available 1998
Hardware required PC with at least 512 K of RAM. A graphics

adapter (CGA, EGA, VGA, or Hercules
monographic) and 2 Mb of disk space are
recommended.

Software required Windows
Availability and cost Available on request; Free
Software PEST version 13.0
Developer John Doherty
Contact address Watermark Numerical Computing, 336

Cliveden Avenue, Corinda 4075, Australia
Telephone 07 3379 1664
Email address johndoherty@ozemail.com.au

Abbreviations: ANPP, aboveground net primary productivity; ARS, Agricultural
Research Service; C, carbon; CEC, cation-exchange capacity; CH4, methane; C/N
ratio, carbon to nitrogen ratio; d, index of agreement; DEFAC, decomposition factor;
DNDC, denitrification decomposition model; EPA, Environmental Protection
Agency; GHG, greenhouse gas; GML, GausseMarquardteLevenberg; NH4

þ ,
ammonium cation; J, Jacobian matrix; N, nitrogen; N2O, nitrous oxide; NPP, net
primary productivity; NO3

� , nitrate anion; PEST, parameter estimation software;
MB, mean bias; RMSE, root mean square error; rRMSE, relative root mean square
error; SOC, soil organic carbon; SOM, soil organic matter; SVD, singular value
decomposition; SWSR, sum of weighted squared residuals; VSWC, volumetric soil
water content; UAN, urea ammonium nitrate.
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Year first available 1994
Hardware required Desktop or Laptop
Software required Windows or Linux
Availability and cost down load from: http://www.

pesthomepage.org/Downloads.php;
Free.

1. Introduction

Greenhouse gases (GHG) released from the soils of terrestrial
ecosystems are highly variable in space and time due to the inter-
action of climatic drivers and ecosystem processes involved in
carbon (C) and nitrogen (N) transformation associated with pro-
duction and consumption of GHGs (Müllera et al., 2002; Rahn et al.,
2012;Wrage et al., 2001). Fieldmeasurements that capture the high
temporal and spatial variability of N2O fluxes (Bouwman et al.,
2002; Parkin, 2008; Snyder et al., 2009) or the high spatial vari-
ability of soil organic carbon (SOC; Conant and Paustian, 2002;
Kravchenko and Robertson, 2011) are expensive, time intensive,
and unable to capture the full range of ecological and environ-
mental conditions. When properly informed by field observations,
ecosystem process-based models are a powerful way to investigate
the effects of management practices on GHG emissions or SOC from
different ecosystems, soils, and climates.

A number of biogeochemical models have been developed and
used to quantify GHG emissions and SOC at both plot and landscape
scales, e.g., Century (Parton et al., 1994; Parton, 1996), DayCent (Del
Grosso et al., 2005; Parton et al., 1998), deni-
trificationedecomposition (DNDC) (Li et al., 2000), ecosys (Grant
et al., 1993) and EPIC (Wang, 2005). These models are mathemat-
ical representations of our understanding of the complicated,
coupled biogeochemical soil processes that allow us to test our
understanding through comparison of model results with obser-
vations, and predict responses to conditions that have not yet been
observed, such as ecosystem responses to changing climate. Thus
these models have become important tools in the study of
biogeochemical cycles. Model development is based on a quanti-
tative understanding of the interactions among physical, chemical
and biological processes that is critical for predicting the ecosystem
response to land use or climate change. The individual underlying
processes are represented by sets of equations in component
models that are coupled together to describe a full system (Wallach
et al., 2014). Models usually have a mechanistic structure that re-
flects our understanding of the processes governing the system
behavior. Many ecosystem models utilize several hundred param-
eters representing individual physical quantities or combinations of
physical quantities that may not be observable through direct
measurement. It is thus impossible to measure the sensitivity of
system behavior to each of these parameters and information on
their identifiability through field observations is often not available.
Yet for model users and particularly model developers, an under-
standing of how model parameters influence the simulation of
target ecosystem processes and which field observations are most
useful in defining parameter values is essential.

The DayCent model is a widely used terrestrial biogeochemical
process-based model of intermediate complexity (Del Grosso et al.,
2001, 2002; Parton et al., 1998). It has been used to simulate
ecosystem responses to changes in climate and agricultural man-
agement practices in crop, grassland, forest and savanna ecosys-
tems (Brilli et al., 2013; Cheng et al., 2014; Del Grosso et al., 2008a,
2009; Hartman et al., 2009; Parton et al., 2007; Parton and
Rasmussen, 1994). In the USA, it has been used to quantify N2O

emissions from agricultural soils for the US National Greenhouse
Gas Inventory compiled by the EPA (Olander and Haugen-Kozyra,
2011) and reported annually to the UN Framework Convention on
Climate Change (US EPA, 2014). DayCent consists of sub-models for
soil water content and temperature by layer, plant production and
allocation of net primary production (NPP), decomposition of litter
and soil organic matter (SOM), mineralization of nutrients, N gas
emissions from nitrification and denitrification, and CH4 oxidation
in unsaturated soils.

The accuracy with which a model represents the natural system
observed in the field depends on how completely the underlying
biophysical processes are represented in themodel andhowwell the
model parameters are calibrated to field observations. Like other
biogeochemical process-based models, DayCent is typically cali-
brated manually by adjusting one parameter at a time, thus the
calibrated parameters are adjusted in an iterative fashion inmultiple
stages (Wallach et al., 2014). At each stage, specific processes are
targeted (e.g., plant growth and yield, SOC), and themost influential
parameters are adjusted tomatch simulated to observed values (Del
Grosso et al., 2011). This approach, however, does not guarantee full
extraction of information from the field observations and it is diffi-
cult to knowwhen calibration correctly balances the performance of
all model components (Nolan et al., 2011). It is generally accepted
that manual calibration of complex ecosystem models does not
necessarily yield optimal parameter estimates, is somewhat arbi-
trary, and results in high uncertainty in model parameters and
simulated variables (Schwarz et al., 2006). Inverse modeling, based
on an objective statistical method and mathematical techniques for
stable parameter estimation, has become a widely accepted way to
enhance the transfer of information contained in field observations
to model parameters (Doherty, 2003; Doherty and Hunt, 2010a;
Hunt et al., 2007). Despite mathematical objectivity, some subjec-
tivity is unavoidable: through defining the conceptualization of the
inverse problem and making a set of decisions related to regulari-
zation, parameter bounds, observation weighting strategy, etc.
(Fienen, 2013). The inverse modeling tool PEST (Doherty, 2010) uses
an iterative, nonlinear regression approach that involves simulta-
neous adjustment of multiple model parameters and evaluation of
model fit by the sum of weighted squared residuals between field
observations and simulated values. In addition to providing so-
phisticated estimates of the parameter values that provide the best
possible fit for a given calibration problem, inverse modeling pro-
vides amethod for comprehensivemodel analysis through statistical
measures such as the variance/covariance matrix, parameter corre-
lations, confidence intervals, sensitivities, identifiability, and pre-
dictive uncertainty analysis (Moore and Doherty, 2005, 2006).

These tools can help users recognize model problems that are
difficult to identify with manual calibration methods (Hill and
Tiedeman, 2007; Poeter and Hill, 1997). For example, it has been
repeatedly observed that only a small number of the many pa-
rameters used in most environmental models are uniquely esti-
mable with most datasets (Beck and Halfon, 1991; Beven and Freer,
2001; Doherty and Hunt, 2009). The inability to uniquely identify
certain model parameters can be the result of their high correlation
with other parameters, or lack of sensitivity of the model outputs to
these parameters. This sort of problem is extremely difficult to
recognize without specialized tools and can lead to misidentifica-
tion of parameter values, model over-fitting, and inaccurate model
projections for conditions outside the range of the calibration
dataset. Applying inverse modeling tools provides valuable insight
about parameter dependencies, which parameters are exerting the
most influence on the simulated values, whether the field obser-
vations contain enough information to estimate the model pa-
rameters, and the uncertainty associated with the predictions
based on the estimated parameter values.
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