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We develop a stochastic optimal control framework to address an important class of economic problems
where there are discontinuities and a decision maker is able to undertake impulse controls in response to
unexpected disturbances. Our contribution is two fold: (1) to develop a linear programming algorithm
that produces a consistent approximation of the maximum value and optimal policy functions in the
context of stochastic impulse controls; and (2) to illustrate the economic benefits of impulse controls

optimized, using our framework, and calibrated to the population dynamics of a marine fishery. We
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1. Introduction

Optimal control methods have been widely used to address
many economic phenomena that include the dynamics of saving
and investment behaviours or the optimal extraction of natural
resources. Such methods, however, are rarely used for an important
class of problems where a decision maker is able to undertake
impulse controls and there are discontinuities in the system. The
importance of impulse controls in economics has long been
recognized, at least in renewable exploitation (e.g., Clark, 1976;
Hannesson, 1975), but economic applications are scant. One
possible explanation, as observed by Erdlenbruch et al. (2010), is
that deterministic impulse control can only rarely be applied at an
aggregate level in terms of optimal policy responses because of the
possibility that anticipated state jumps may give rise to arbitrage
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opportunities by economic agents. By contrast, in the mathematics
literature there are multiple descriptions (Getz and Martin, 1980;
Perthame, 1984; Dar'in et al., 2005), and impulse controls are
included in the hybrid control literature (Branicky et al., 1998; Attia
et al., 2007).

There are at least two broad categories of economic problems
that can be analysed by impulse controls. In the first category, de-
cision makers select to implement cyclical policies where the
controls are activated at the beginning of a cycle. This class of
problems has been recently analysed by Erdlenbruch et al. (2013)
who propose a condition for the existence of such a cyclical pol-
icy, based on a deterministic unidimensional impulse-control
framework introduced by Vind (1967) and Leonard and Long
(1992).

Our paper focuses on the second category of impulse controls
which are designed to deal with uncertainties and when and how
to apply impulse controls in response to an unexpected disturbance
to the state variable(s). Such decisions are of practical relevance and
include the policy responses that may arise following a catastrophic
event, such as an earthquake or cyclone, or what might be the
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optimal investment or spending decision following an adverse
financial event. The approach we use to solve this class of economic
problems, and that requires impulse controls, incorporates: (1)
Bellman's (1957) state-dependent decision-making rule and (2)
uncertainty with a well-defined probabilistic distribution that al-
lows for shocks consistent with real-world phenomena. Our model
uses state-jump uncertainties based on Poisson diffusions (Walde,
2010) that can cause a sudden change in state variables and also
allows for the activation of unanticipated impulse controls.

Our impulse control is a combination of the standard optimal
control and real options (Dixit and Pindyck, 1994) with disconti-
nuities in response to unanticipated disturbances. Managing envi-
ronmental risks could greatly reduce losses from negative shocks
(Balica et al., 2013) and real options are not limited to finance but
can be used in environmental and economic modelling (see
Marques et al., 2015 for a list of examples). In our view, risk man-
agement is the beginning of any policy modelling process
(Refsgaard et al., 2007) where both routine performance and the
ability to quickly respond to unexpected disturbances are impor-
tant (e.g., Zagonari and Rossi, 2013). Our impulse control provide a
modelling framework to specify not only the optimal actions under
normal circumstances, but also the optimal recovery option from a
disturbance by making relocation of resources.

Another important contribution of our paper is to develop a
linear programming algorithm that, under the regular assumption
of twice differentiability, produces a consistent approximation of
the maximum value and optimal policy functions for impulse
control problems, including deterministic ones. While linear pro-
gramming has been used in dynamic programming for more than
half a century (Manne, 1960; Ross, 1970), it has been limited to
discrete-state problems because of the requirement that there be a
finite number of possible states. Recent developments by Farias and
Roy (2003, 2004) have used a contraction mapping Bellman oper-
ator and introduced a consistent parametric approximation via
linear programming that can be applied to continuous-state
discrete-time problems. Han and Roy (2011), and also Kompas
and Chu (2012), have shown how this parametric approximation
can be applied to standard Hamilton—Jacobi—Bellman (HJB) oper-
ators. The consistency of such an approach is, as yet, not confirmed
because HJB operators do not possess a contraction mapping as
does the discrete-time analogue. By contrast, in our solution algo-
rithm, the parametric linear programming approach is extended to
impulse controls, but without using contraction mapping. Unlike
the random approximation and probabilistic error bound employed
by Farias and Roy (2004), we focus on a non-random consistent
approximation for the impulse control framework.

To show the practical relevance of impulse controls, we illus-
trate the framework in the context of the establishment and relo-
cation or switching of a marine reserve or no take area that also
requires the optimization of the level of harvest for a target species.
Our application is calibrated to the Pacific Halibut fishery (Grafton
et al., 2006) and encompasses the key characteristic of the prob-
lems requiring impulse controls, namely, uncertainty that involves
a sudden change in state variables, in this case the fish stock.

In Section 2, we provide the general problem formulation that
bounds the state and control variables, defines the uncertainty
components and delineates the relevant economic assumptions.
Section 3 presents an easy-to-implement algorithm for a numerical
solution, with requisite proofs. It shows that our method has a
solution and also that the approximation errors converge to zero as
more computation resources are devoted to the optimization. Our
method is illustrated in Section 4 where, following a negative
environmental disturbance that reduces the size of a fish stock, the
decision maker must determine the optimal size of the harvest and
the proportion of the stock located in a reserve or no-take area.

Section 5 concludes while formal proofs are provided in the
appendices.

2. Optimization with impulse controls
2.1. State, control variables and state transition

We specify a dynamic system with an n-dimensional vector of
state variables that has an initial value defined in equation (1):

k(0) =s where se #" (1)

At each point in time, the states can be controlled via two types
of control variables, namely continuous and impulse controls. The
continuous control, denoted as c, can take values in correspondence
¢“(k) and the impulse control, denoted as w, can take value in
correspondence ¢®“(k). When the state is controlled via the
continuous control ¢ € ¢“(k), we assume, without the loss of gen-
erality, that the impulse control takes value zero w = O (thus Vk:
0 € ¢“(k)), and then the continuous transition is governed by:

dk = g(k, c)dt + db(k) + dq(k) 2)

where db(k) is the differential of a Brownian diffusion with state-
dependent standard error b(k) to capture neutral uncertainty and
dq(k) is the differential of a state-dependent Poisson diffusion to
capture unexpected disturbances. Following Walde (2010), the
Poisson diffusion we use in this model is a continuous-time random
process q such that

_ [ dq(k)=0 with probability Adt
q(k(t +dt)) — q(k(t)) = { 0 with probability 1 — 2dt
where dq(k) is an n-dimensional vector referred to as the size and
scalar A is the rate of arrival (possibly state-independent) of the
diffusion.

If controlled via the impulse control (w € ¢“(k)\{0}), the states
will jump discontinuously and the continuous control takes value
zero (0 € ¢“(k) Yk). To model this discontinuous jump, we define a
jump function, ¢ := (%", #) — £", mapping pre-jump state and the
impulse control to post-jump state:

k(#) = ¢(k(r),w(r)) where Yk : o(k,0) =k 3)

2.2. Objective function and optimization

We consider a policy plan over an infinite time horizon
{c(t)y’, w(t)g’} which specifies that the impulse control v is acti-
vated at time t = 7ili=1, 2...M (M can be finite or infinite). The
(current value) cost to activate the impulse control is C(k(7;), w(7;)),
where C:= (%", #)— «. Other than the jumps, the states are
controlled continuously and generate an instantaneous return
u(k,c). Following Kemp and Long (1977), the return associated with
the policy plan {c(t)y’,wg}, aggregating from time zero, with a
discounting rate p > 0, will be:

M Tis1 M
ulcwr0) =3y / etu(k(t),c(t))dt — > " e "C(k(r;), w(ry))
i=0 7, i=1

i

(4)

where for the sake of shortening the notation: 7350 and 71 = 0.
The optimization problem is to choose a feasible policy plan
{c(t)y’,wF} that maximizes the expected value of the return
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