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a b s t r a c t

Sensitivity Analysis (SA) of the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) model has been
performed in this study using a cutting edge and robust Global Sensitivity Analysis (GSA) approach,
based on the use of the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) tool. The
sensitivity of the following model outputs was evaluated: the ambient CO2 concentration, the rate of CO2

uptake by the plant, the ambient O3 concentration, the flux of O3 from the air to the plant/soil boundary
and the flux of O3 taken up by the plant alone. The most sensitive model inputs for the majority of
outputs were: The Leaf Area Index (LAI), Fractional Vegetation Cover (Fr), Cuticle Resistance (CR) and
Vegetation Height (VH). The influence of the external CO2 on the leaf and O3 concentration in the air as
input parameters was also significant. Our study provides an important step forward in the global efforts
towards SimSphere verification given the increasing interest in its use as an independent modelling or
educational tool. Results of this study are also timely given the ongoing global efforts focused on deriving,
at an operational level, spatio-temporal estimates of energy fluxes and soil moisture content using
SimSphere synergistically with Earth Observation (EO) data.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The complex interplay between the different facets of land-
esurface interactions play a fundamental role in the spatio-
temporal variations of carbon dioxide (CO2) and ozone (O3) fluxes
within the Earth system. Within the atmospheric boundary layer,
the exchange of CO2 at the surface is primarily the result of complex
vegetation processes (Boussetta et al., 2013). CO2 is assimilated in
vegetation by photosynthesis (expressed as gross primary pro-
ductivity) and is returned to the atmosphere by a variety of above-
and below-ground metabolic processes (Bloemen et al., 2013).
Stomatal behaviour provides the main short-term control of both
transpiration and CO2 assimilation. Crops grown under CO2
enrichment usually exhibit increased mass, which is attributed to
greater photosynthetic capacity and enhanced water use efficiency
(Olvera et al., 2013). Carbon assimilation and water dynamics are
inherently linked to crop yield and so an understanding of these

relationships is fundamental to our ability to understand, or pre-
dict, plant productivity. The Intergovernmental Panel on Climate
Change (IPCC) predicts concentrations of atmospheric CO2 will
continue rising from their current concentrations of
~395 ppmve>420 ppmv by 2050 (IPCC, 2001). Therefore, under-
standing the interactions between plants and environment is a
central requirement when forecasting the effects of future climate
change and variability (Williams et al., 2012).

Tropospheric ozone is a phytotoxic air pollutant responsible for
crop and forest damage worldwide (Panek, 2004). The impact of O3
exposure usually manifests as necrotic lesions, decreased photo-
synthesis and accelerated senescence (Pell et al., 1997; Wiese and
Pell, 1997). The exact mechanism by which O3 stress is imposed is
unclear but probably occurs through the formation of reactive ox-
ygen species such as superoxide and hydrogen peroxide (Pell et al.,
1997). Furthermore, stomatal control may be reduced following
exposure to O3 which causes greater susceptibility to drought stress
(McLaughlin et al., 2007). This has major implications for tree and
crop performance in the future climate as temperatures are pre-
dicted to increase (thus increasing transpiration) along with a
greater area affected by more frequent drought (IPCC, 2014). The
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effect of O3 stress on stomatal regulation and implications for
drought susceptibility has been found to offset much of the pro-
jected benefit of rising CO2 for plant growth in some biogeo-
chemical models (Ollinger et al., 2002). The direct reduction in
forest productivity currently caused by O3 stress is estimated to be
1e10% for forests in Europe and North America (Broadmeadow,
1998). Thus, O3 is clearly an important economic factor in
biomass production and there is a need to understand its influence
on plant processes (Ainsworth et al., 2012; Konovalov et al., 2012).
To this end, an improved quantification of the effect of land surface-
atmosphere interactions on the spatio-temporal distribution of CO2
and O3 fluxes will enable the development of coherent plans to
manage ecosystems for future climate mitigation and agricultural
production (Pitman et al., 2012; Williams et al., 2012).

In this context, a representative description of land surface-
eatmosphere interactions requires mathematical models able to
accurately describe interdependent physical and biological pro-
cesses in vegetation and soil, as well as physical processes within
the atmospheric boundary layer (Marras et al., 2011). Several
modelling approaches have been developed to represent the
terrestrial carbon cycle depending on the main goals of the
modelling effort. Aggregated ‘big leaf’ models for instance, act to
simulate selected mass, water and energy transfers from a repre-
sentative leaf surface which is scaled up to the whole canopy, either
based on simple linear scaling or on a non-linear scaling by parti-
tioning between Sunlit and shaded leaves (Ganzeveld et al., 2012).
Generally, these models are widely regarded as the simplest group
of models, but behold vast application value such as data gap filling
and tracing gas fluxes (Baldocchi, 2010). Soil Vegetation Atmo-
sphere Transfer (SVAT) models are more complex ‘distributed
multi-layer models’ which differ in their approach to estimate
surface exchanges. These embedded modelling efforts are numer-
ical representations of the multifarious interactions of energy and
mass transfers through the soil/vegetation/atmospheric 1-
dimensional vertical column (Marras et al., 2011). They require an
application context constrained by input variables (atmospheric
forcing and vegetation variables) and input parameters (soil and
vegetation properties, initialisation) to simulate the water and
energy budget at the surface. The number of parameters is gener-
ally related to the complexity of the model and their calibration
requires the development of optimisation methodologies (Coudert
and Ottl�e, 2007).

A SVAT model, termed SimSphere, was originally developed by
Carlson and Boland (1978) within the Department of Meteorology
of Pennsylvania State University, USA, and has continued to be
developed over a period of more than two decades. Notably, during
this period the model has undergone significant modifications by a
number of contributors, most recently by Petropoulos et al. (2013a).
Briefly, it is a one-dimensional boundary layer model with a plant
component implicitly referring to a horizontal area of undefined
size that can be composed of a mixture of bare soil and vegetation.
In addition to its use as a stand-alone modelling tool, SimSphere is
also integrated synergistically with Earth Observation (EO) data via
a method termed the “triangle” method (Carlson, 2007;
Petropoulos and Carlson, 2011). This method interprets the rela-
tionship between a Vegetation Index (VI) and surface radiative
temperature (Ts) derived from a satellite-derived scatter plot,
linked with SimSphere to deduce evaporative fraction (EF) over
large areas (Long and Singh, 2013). Variants of this method are at
present being considered for the development of operational
products from EO data, some anticipated to be delivered on a global
scale (Chauhan et al., 2003; ESA STSE, 2012). However, being a
mathematical representation of natural processes, such modelling
approaches require a considerable number of assumptions on
model structure, model parameter values and model input

variables. These input parameters can lead to output uncertainty
and inaccuracy (Cosenza et al., 2014; Vanuytrecht et al., 2014). Thus,
Sensitivity Analysis (SA) is an essential and well-established tool
that has been used in evaluating robustness of model based results
(Feyissa et al., 2012; Ratto et al., 2012). In particular, SA quantifies
the influence of each uncertain factor (parameter or driving vari-
able) on the model's output variability (Gan et al., 2014). It can help
to determine the relationship between independent and depen-
dent variables to get a better understanding of the model perfor-
mance. Reasons for performing SA are diverse; it allows for Factor
Fixing (FF), where factors that are non-influential can be set to a
fixed value anywhere in their uncertainty range and it would not
affect model output variance. Factor Prioritisation (FP) on the other
hand, is where the modeller focuses on the parameters that have
the potential to maximally reduce model output variance if deter-
mined. For the case of FP, SA allows for better estimation of the
actual factor value and distribution (Nossent et al., 2011; Gamerith
et al., 2013).

SA methods are generally classified as either Local Sensitivity
Analysis (LSA) or Global Sensitivity Analysis (GSA). In LSA methods,
each factor is perturbed in turn from randomly generated reference
parameter sets, whilst holding all others to their central value and
computing the difference in the outputs (Wainwright et al., 2013;
Baroni and Tarantola, 2014). Although a computationally frugal
method, LSA can be criticised for being inadequate for analysing
complex biophysical process models which may have many pa-
rameters, and may be high-dimensional and/or non-linear (Song
et al., 2012; Wainwright et al., 2013). Compared with LSA, GSA
provides quantitative importance measures that relate the variance
of the output with each input dependent variable on different
sources of variation over the entire parameter space (Wei et al.,
2013). Furthermore, GSA approaches are not limited by model
complexity and provide robust sensitivity measures in the presence
of non-linearity and interactions amongst parameters. However,
the model complexity and high number of parameters can be
computationally intensive and inefficient (Gatelli et al., 2009;
Wainwright et al., 2013; Gan et al., 2014). Given the intricacy of
the physical interconnections involved in modelling land surface-
eatmosphere interactions, GSA has become popular in the envi-
ronmental modelling field in recent years. The complexity of such
models and their ability to incorporate parameter interactions can
be a significant advantage when deriving simulation outputs that
are fully analogous of the real world system in terms of accuracy,
generality and realism (Anderson et al., 2008). A number of studies
have thus performed advanced GSA on SimSphere based on a
Gaussian process emulator (Petropoulos et al., 2009b, 2010,
2013bed). These allowed, for the first time, an insight into the
model architecture and the mapping of the sensitivity between the
model inputs and outputs. However, SA studies on SimSphere have
been limited to only a small number of output parameters, and the
effect of different simulation times on model sensitivity has yet to
be explored.

In this context, the objective of this study is two-fold: i) To
perform a GSA to explore the sensitivity of target quantities
simulated by SimSphere for the model inputs/outputs, which have
not been previously investigated. These parameters are namely; the
ambient CO2 concentration [ppmv], the rate of uptake of CO2 by the
plant [mmol m�2 s�1], the ambient O3 concentration [ppmv� 10�3],
the flux of O3 from the air to the plant/soil boundary [mg m�2 s�1],
the flux of O3 taken up by the plant alone [mg m�2 s�1]. ii) To
extend the GSA on SimSphere and to explore the sensitivity of the
same target quantities at different simulation times (9:30/11:30/
13:30), which coincide closely to overpass times of different sat-
ellite sensors. These objectives will allow us to foster an under-
standing of the model structure and further establish its coherence.
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