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a b s t r a c t

Common streamflow gauging procedures require assumptions about the stage-discharge relationship
(the ‘rating curve’) that can introduce considerable uncertainties in streamflow records. These rating
uncertainties are not usually considered fully in hydrological model calibration and evaluation yet can
have potentially important impacts. We analysed streamflow gauge data and conducted two modelling
experiments to assess rating uncertainty in operational rating curves, its impacts on modelling and
possible ways to reduce those impacts. We found clear evidence of variance heterogeneity (hetero-
scedasticity) in streamflow estimates, with higher residual values at higher stage values. In addition, we
confirmed the occurrence of streamflow extrapolation beyond the highest or lowest stage measurement
in many operational rating curves, evenwhen these were previously flagged as not extrapolated. The first
experiment investigated the impact on regional calibration/evaluation of: (i) using two streamflow data
transformations (logarithmic and square-root), compared to using non-transformed streamflow data, in
an attempt to reduce heteroscedasticity and; (ii) censoring the extrapolated flows, compared to no
censoring. Results of calibration/evaluation showed that using a square-root transformed streamflow
(thus, compromising weight on high and low streamflow) performed better than using non-transformed
and log-transformed streamflow. Also, surprisingly, censoring extrapolated streamflow reduced rather
than improved model performance. The second experiment investigated the impact of rating curve
uncertainty on catchment calibration/evaluation and parameter estimation. A Monte-Carlo approach and
the nonparametric Weighted Nadaraya-Watson (WNW) estimator were used to derive streamflow un-
certainty bounds. These were later used in calibration/evaluation using a standard Nash-Sutcliffe Effi-
ciency (NSE) objective function (OBJ) and a modified NSE OBJ that penalised uncertain flows.
Using square-root transformed flows and the modified NSE OBJ considerably improved calibration and
predictions, particularly for mid and low flows, and there was an overall reduction in parameter
uncertainty.

Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Streamflow data are generally estimated from stage measure-
ments through a stageedischarge relationship (the ‘rating curve’),
developed through measurement of flow using manual methods
(estimation of flow velocity combinedwith estimates of river width

and height for subsections of the river) and relating that to
measured flow height at various points in time; then interpolation/
extrapolation of that relationship across all height-flow levels using
regression techniques to produce a curve. Several sources of un-
certainty can be accounted for in this procedure including mea-
surements of flow height, width and shape of the river cross-
section and inaccuracies in the measurement of the velocityearea
relationship (Domeneghetti et al., 2012). Another source of uncer-
tainty arises from the regression techniques used to derive the
stageedischarge relationship. The classical approach for deriving
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stage-discharge (rating) relationship involves fitting a curve for
(log-transformed) discrete rating measurements using (non)linear
least squares. This implicitly assumes that the measurement re-
siduals have a normal distribution and are unrelated to the ex-
pected discharge (Petersen-Øverleir, 2004). Residuals for existing
curves often show non-normal distributions (e.g. Tomkins and
Davidson, 2011) with higher residual values at higher stage
values (heteroscedasticity). Scarce sampling and heteroscedasticity
observed in streamflow residuals may introduce large uncertainty
in streamflow estimates based on extrapolation of the rating curve
(Westerberg et al., 2011). These streamflow observations are the
core data used to calibrate hydrological models.

Objective functions (OBJs) are used in calibration to minimise
the differences between observed and modelled streamflow and
also to assess the model performance under prediction. Tradition-
ally, the minimisation is performed against the sum-of-squared
residuals under the assumption that these residuals are homosce-
dastic in nature (i.e. there is no variance heterogeneity in the
streamflow data). This assumption is often not valid for streamflow
data (Petersen-Øverleir, 2004) and its violation may overestimate
goodness-of-fit metrics used in simulations (McMillan et al., 2010).
Moreover, routinely used OBJs in calibration, for example the Nash-
Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970), place high
weights on high flows which may be extrapolated, thus potentially
biasing predictions (Croke, 2007).

In this paper, we investigate the impact of streamflow rating
uncertainty on hydrological model calibration and performance
(i.e. ‘prediction’ using streamflow data from catchments not used
for model calibration or split-sample ‘evaluation’ using streamflow
data from a period not used for model calibration). Firstly, we use a
comprehensive hydrometric dataset of 65 streamflow gauges
(described in Section 2) to assess the occurrence of hetero-
scedasticity and extrapolation in rating curves (Section 2.1). Sec-
ondly, we conduct two types of experiments:

(i) The first experiment makes use of the entire streamflow
dataset (65 streamflow time-series) to assess the impacts of
including uncertain extrapolated streamflow data in a
regional calibration/prediction experiment (Section 2.2).
Several methods were trialled to address this problem; from
censoring all extrapolated high flows to using streamflow
Box-Cox transformation (Box and Cox, 1964; Bennett et al.,
2013) in an attempt to reduce heteroscedasticity. For this
experiment, we calibrated a single parameter set (n ¼ 28) of
the process-based landscape water balance model Australian
Water Balance Assessment system Landscape model (AWRA-
L) (van Dijk, 2010; van Dijk and Renzullo, 2011; Vaze et al., ,
2013) in 33 of the 65 stations and performance was inde-
pendently evaluated for the remaining 32 stations. We
assessed the impact of censoring high flows on the NSE
compared to no censoring. We repeated the experiment us-
ing two streamflow transformations (logarithmic and
square-root). The regional calibration (i.e. a single set of pa-
rameters to predict flows in a large geographical domain)
was chosen for methodological and practical reasons. Firstly,
predictions of streamflow and other fluxes and stores (e.g.
evapotranspiration and soil water) are required in many
ungauged basins with dissimilar climate and biophysical
characteristics; a regional calibration using a large amount of
catchment streamflow data might yield better results than
parameter regionalisation techniques (Parajka et al., 2007;
Vaze and Teng, 2011). Secondly, AWRA-L has been region-
ally calibrated (using a similar approach as in this paper)
against Australian streamflow and evapotranspiration data;
producing results that markedly improved compared to a

previous non-calibrated version (version 1.0 vs. 0.5; Viney
et al., 2011). The calibration results were also similar to
results from locally calibrated conceptual models, showing
that AWRA-L can capture the different climatic and bio-
physical characteristics that affect streamflow (Viney et al.,
2011). Thirdly and finally, AWRA-L is currently used opera-
tionally to provide information on water fluxes and stores
across Australia and its being continuously refined.

(ii) The second experiment investigates the impact of rating
curve uncertainty on the NSE and parameter estimation in a
local calibration/evaluation (Section 2.3) using a Monte-
Carlo approach and the nonparametric Weighted Nadaraya-
Watson (WNW) estimator. We use these methods for quan-
tifying the error in the rating curve because they capture
changes in the rating curve with time, they are nonpara-
metric and make minimal assumptions about the probabi-
listic distribution of the data. We employed them to derive
rating curve uncertainty bounds for 100 streamflow real-
isations. To interpret impacts on parameter space, we cali-
brated 4 parameters of the simpler conceptual rainfall-runoff
model GR4J (compared to the 28-parameter AWRA-L) (Perrin
et al., 2003). These were later used in split-sample calibra-
tion/evaluation in a single station using a standard NSE OBJ
and a modified NSE OBJ, which used the uncertainty
bounds to penalise uncertain flows. Again, we repeated the
experiment using logarithmic and square-root streamflow
transformations.

The data and methods are described in Section 2. The results of
the experiments are presented and analysed in Section 3, the
findings are discussed in Section 4 and finally conclusions are
drawn (Section 5).

2. Data and methods

The New SouthWales (NSW) Office of Water (NoW) in Australia
regularly republishes the ‘Pinneena’water database on DVD (http://
waterinfo.nsw.gov.au/pinneena/gw.shtml). The version used here
(December, 2009) includes 127,000 years of daily streamflow in-
formation from 1400 stations. The database includes records of
hydraulic control type (including concrete structures, rocky river
bed not reinforced with concrete, gravel or sand river bed), stage
height, rating tables, interpolation method, gauging measurements
and percentage deviations of gaugings from the rating curve. This
detailed database can be used to infer uncertainty due to extrap-
olation, the occurrence of heteroscedasticity and with the use of
statistical techniques, uncertainty in streamflow data.

The catchments used in the experiments performed here (Fig. 1)
were chosen from a subset in the ‘Pinneena’ database that was
selected for previous modelling studies (Zhang et al., 2013) because
they are headwater catchments without significant influence from
river regulation, urbanisation and irrigation. From this subset,
catchments with >15 years of daily streamflow data (all in ML d�1)
during 1980e2008 and >70 rating measurements were selected,
resulting in a total of 65 stations. Hourly streamflow data was
extracted from the ‘Pinneena’ database and averaged from 9:00
a.m. to 9:00 a.m. the following day, to coincide with the time of
daily rainfall recording. The streamflow volumes were converted to
areal average streamflow (mm d�1).

Climate data used as model forcing included rainfall, Priestley-
Taylor potential evapotranspiration, minimum and maximum
temperature and incoming shortwave radiation. These were
sourced or derived from the Specialised Information for Land
Owners (SILO) dataset (Jeffrey et al., 2001) available from the
Queensland Department of Environment and Resource
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