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a b s t r a c t

Many problems in hydrology and agricultural science require extensive records of rainfall from multiple
locations. Temporal and/or spatial coverage of rainfall data is often limited, so that stochastic models may
be required to generate long synthetic rainfall records. This study describes a multi-site rainfall simulator
(MRS) to stochastically generate daily rainfall at multiple locations. The MRS is available as an open-
source software package in the R statistical computing environment. The software includes statistical
analysis and graphics functions, and can display statistics and graphs at multiple time scales, including
from individual sites and areal averages. The MRS thus provides a detailed set of modelling functions to
simulate and analyse daily rainfall. The capabilities of the package are demonstrated using 30 gauges
located in Sydney, Australia, and the results show that the model preserves observed year-to-year
variability, interannual persistence and various daily distributional and spaceetime dependence
attributes.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in hydrology and agricultural science require
extensive records of rainfall from multiple locations (Mehrotra and
Sharma, 2007a,b; Wilks, 1998). However, observational records are
often short and only represent a single realization of the possible
future patterns of rainfall, so that stochastic models are often used
to augment the observational records. The synthetic rainfall se-
quences should accurately reflect the statistical characteristics of
the historical rainfall record. Depending on the problem, these
statistics can include annual total rainfall, seasonality, interannual
persistence, occurrence probability and intermittency, intensity,
extremes, and the dependence between sites.

The development of a multi-site stochastic rainfall model that
preserves all of these statistics has proved to be extremely chal-
lenging. Most models either fail to account for, or poorly simulate,
the observed low-frequency variability (e.g. the year-to-year
dependence) in daily rainfall (Katz and Parlange, 1993, 1998;

Wilks, 1999a,b) as well as the spatial dependence across multiple
point locations (Mehrotra and Sharma, 2007a,b). The focus on
Markovian dependence at the daily scale also limits the accurate
reproduction of extended drought frequencies because only a few
days' memory is retained at a time (Buishand, 1978; Guttorp, 1995;
Racsko et al., 1991; Semenov and Porter, 1995). Failure to address
these challenges can lead to poor outcomes for hydrological or
agricultural activities in a region. The simulated streamflow, for
example, might misrepresent drought risk, leading to suboptimal
policies that will result in suboptimal catchment management
outcomes (Mehrotra and Sharma, 2007a,b).

Several alternative methods for multi-site rainfall simulation
have been proposed, including nonparametric nearest-neighbour
resampling (Beersma and Buishand, 2003; Mehrotra et al., 2004),
and parametric alternatives, such as multi-site chain-dependent
processes (Wilks, 1998; Qian et al., 2002; Brissette et al., 2007;
Mehrotra and Sharma, 2007b; Burton et al., 2013). Bearing in
mind that the large-scale rainfall generating mechanisms might
lead to similar rainfall patterns over a region (e.g. see Leonard et al.,
2014), weather state based models (also referred to as hidden
Markov chain models; see Hughes and Guttorp, 1994; Thyer and
Kuczera, 2003a,b; Mehrotra et al., 2004) have also been
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developed. Multisite spaceetime dependence has been modelled
using a censored power-transformed multivariate Gaussian distri-
bution (Bardosy and Plate, 1992; Ailliot et al., 2009). Models based
on a NeymaneScott point process coupled with a spatial Poisson
process of cell centers (Cowpertwait, 1995; Leonard et al., 2008)
and fractal cascade model (Jothityangkoon et al., 2000) have been
used to generate rain cell events in space and time.

Several methods have also been proposed to preserve low-
frequency rainfall variability, including those that allow variations
in the stochastic model parameters by conditioning on one or
several atmospheric variables (Hughes and Guttorp, 1994; Hughes
et al., 1999; Mehrotra et al., 2004; Katz and Parlange, 1993; Katz
and Zheng, 1999; Wilks, 1989), and those that conditionally
modify the model parameters on the basis of the values of some
aggregated time scale predictor variables, such as antecedent
rainfall state (wet or dry) at various levels of aggregation at gauged
(Harrold et al., 2003a,b) and ungauged (Mehrotra et al., 2012) lo-
cations. The rainfall occurrence (Harrold et al., 2003a) was resam-
pled from the historical record of rainfall occurrence, conditional to
the current values of antecedent rainfall state, while the amount
(Harrold et al., 2003b) was conditioned on the rainfall amount on
the previous day and a 365 days wetness state index variable to
closely reproduce the historical longer-term variability. A novel
method for reconstructing both the observed spatial (inter-site) as
well as temporal correlation statistics has been proposed by Clark
et al. (2004a,b). The approach explains a large part of the
observed interannual variability in the generated series without
involving major changes in the basic structure of the rainfall gen-
eration models. Sharma and Mehrotra (2010) provide a compre-
hensive review of various rainfall generation approaches.

Mehrotra and Sharma (2007b) proposed a semi-parametric
multi-site rainfall model referred to as the ‘multi-site Markov
model e kernel density estimator’ (MMM-KDE), which is designed
to preserve both the time and space dependent structures in
rainfall simulations. Similar to other multi-site models, the MMM-
KDE requires extensive pre-processing of observed information to
estimate the model parameters. The model is effective, but is
potentially challenging to implement due to the large number of
steps in the algorithm, as well as the complexity of some of the
mathematical concepts.

To represent many of these spatial and temporal features of
rainfall variability, we develop and describe a software tool called
the multi-site rainfall simulator (MRS), which runs the MMM-KDE
algorithm and analyses daily rainfall at multiple locations. Once the
MRS is installed, an interactive screen asks the user to enter some
basic information required to run the model. The model-generated
results can be visualised in the form of tables and graphs and can be
saved for use in other applications at a later stage. A help file is also
provided with the package. The capabilities and utilities of the tool
have been demonstrated by applying it to data from 30 rain gauges
around Sydney, Australia, and the results are presented in the form
of plots and tables of observed and simulated at-site statistics and
several spatio-temporal dependence attributes.

The paper is organised as follows. The model, its features and
use are described in Section 2. In Section 3 the software architec-
ture is described. Details of the application of the model and a
comparison of the various results are presented in Section 4. We
conclude the paper by presenting the summary in Section 5.

2. The multi-site rainfall simulator (MRS)

MRS is a multi-site Markov model that is designed to account
for low-order dependence, by making use of (a) aggregated time
scale predictor variables to preserve the longer-time scale
dependence (i.e., low-frequency variability) and (b) spatially

correlated random numbers to maintain the desired spatial cor-
relations in the generated rainfall sequences. These are features
unique to the MRS.

The rainfall simulation proceeds in two stages. In the first stage,
rainfall occurrences are generated using a two-state, first order
Markov model. At each time step, Markovian transition probabil-
ities are modified on the basis of the aggregated wetness over pre-
specified period(s) of time in the recent past. In the second stage,
rainfall amounts on simulated wet days are generated using a
nonparametric kernel density estimation approach assuming first
order Markovian dependence. To begin with, models for occur-
rence and amounts are applied independently at each point
location.

The spatial dependence in the rainfall occurrences and amount
series are then induced by using spatially correlated random
numbers in the generation process. This significantly simplifies the
model structure. The seasonal transition is maintained by esti-
mating the daily Markovian probabilities and correlations using a
moving window (Rajagopalan and Lall, 1999; Mehrotra et al., 2006;
Mehrotra and Sharma, 2007a,b), thereby avoiding the sharp tran-
sitions from one month to another. A brief description of the
temporal and spatial aspects of the model is provided in the
following sections; for more details refer to Mehrotra and Sharma
(2007b, 2010).

2.1. Representation of temporal dependence

A single-site first order Markov model is defined as P(OtjOt�1)
where Ot refers to the rainfall occurrences at time step t. Inclusion
of additional continuous predictors Xt as conditioning variables
modifies the first order conditional dependence to P(OtjOt�1,Xt).
Examples of predictors that can be used include large-scale atmo-
spheric variables and/or antecedent rainfall at various levels of
aggregation. Expanding the conditional expression and rearranging
the terms leads to:

PðOt ¼ 1jOt�1 ¼ i;XtÞ

¼ PðOt ¼ 1;Ot�1 ¼ iÞ
PðOt�1 ¼ iÞ � f ðXt jOt ¼ 1;Ot�1 ¼ iÞ

f ðXt jOt�1 ¼ iÞ (1)

The first expression on the right of (1) defines the transition
probabilities P(OtjOt�1¼ i) of a first order Markov model (repre-
senting order-one dependence,p1), whereas the second expression
signifies the effect of including the additional predictor set Xt in the
model. The second expression is approximated as a multivariate
normal, which is likely to be a reasonable assumption when Xt

represents the aggregated predictor variables (e.g. rainfall occur-
rences) over a period such as a year, or smoothly varying large-scale
atmospheric variables. Under specific instances where the
assumption of a multivariate normal may not be valid, it is possible
to transform the data or use alternative probability distributions
(e.g. see Mehrotra and Sharma, 2010).

The second expression of (1), when expanded as a multivariate
normal, leads to the following simplification for P(OtjOt�1¼ i,Xt):

PðOt ¼1jOt�1 ¼ i;XtÞ¼p1;i

� f ðXt jOt ¼1;Ot�1 ¼ iÞh
f ðXt jOt ¼1;Ot�1 ¼ iÞp1;i

i
þ
h
f ðXt jOt ¼0;Ot�1 ¼ iÞp0;i

i

(2a)
where p1,i is the baseline transition probability of the first order
Markov model defined by p1,i¼ P(Ot¼ 1jOt�1¼ i), with p0i being
equal to 1 � p1i; m1,i represents the mean vector

R. Mehrotra et al. / Environmental Modelling & Software 63 (2015) 230e239 231



Download English Version:

https://daneshyari.com/en/article/6963523

Download Persian Version:

https://daneshyari.com/article/6963523

Daneshyari.com

https://daneshyari.com/en/article/6963523
https://daneshyari.com/article/6963523
https://daneshyari.com

