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a b s t r a c t

Agricultural droughts can create serious threats to food security. Tools for dynamic prediction of drought
impacts on yields over large geographical regions can provide valuable information for drought man-
agement. Based on the DeNitrification-DeComposition (DNDC) model, the current research proposes a
Drought Risk Analysis System (DRAS) that allows for the scenario-based analysis of drought-induced
yield losses. We assess impacts on corn yields using two case studies, the 2012 U.S.A. drought and the
2000 and 2009 droughts in Liaoning Province, China. The results show that the system is able to perform
daily simulations of corn growth and to dynamically evaluate the large-scale grain production in both
regions. It is also capable of mapping the up-to-date yield losses on a daily basis, the additional losses
under different drought development scenarios, and the yield-based drought return periods at multiple
scales of geographic regions. In addition, detailed information about the water-stress process, biomass
development, and the uncertainty of drought impacts on crop growth at a specific site can be displayed
in the system. Remote sensing data were used to map the areas of drought-affected crops for comparison
with the modeling results. Beyond the conventional drought information from meteorological and hy-
drological data, this system can provide comprehensive and predictive yield information for various end-
users, including farmers, decision makers, insurance agencies, and food consumers.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Drought is a recurring natural hazard (Wilhite and Buchanan-
Smith, 2005) that can cause widespread damage to agricultural
production. Although studies in quantitative drought evaluations
have been conducted for almost a century (e.g., Munger, 1916;
Kincer, 1919; Marcovitch, 1930), the capacity for decision support
in actual drought management is still limited. For example, during
an agricultural drought before harvest, questions frequently asked
by decision makers include: howmuch yield reduction the drought
has caused to date; how severe it is in relation to previous droughts
(return periods); and what the consequences would be if the
drought continues? There is no current body of literature that seeks

to fully address these questions in a quantitative way, especially in
large-scale agricultural droughts.

The underlying challenge behind these questions is how to
address the uncertainty of drought development and quantify its
impacts on grain yields. The stochastic nature of drought is an
inherent cause of uncertainty (Refsgaard et al., 2007). It is difficult
to achieve a deterministic prediction of changes in drought severity
because droughts develop slowly and last a long time. Another
important source of uncertainty is from the epistemic constraints.
Drought is often a phenomenon without a clearly defined begin-
ning or end (Whilhite, 2005). The complex mechanisms of how the
drought affects the processes of water, soil, and crop growth are not
well understood. Although there are multiple approaches that are
relevant to agricultural drought management for the quantitative
evaluation of drought severity and effects, the dynamic evaluation
of the uncertainties in predicting the drought impacts on yield
losses has not been well studied.
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The primary methods available for quantifying drought
severity and yield impacts include agricultural surveys, drought
severity indices, remote sensing and crop modeling. Agricultural
surveys are still the basic means for obtaining information on
crop-growth status and for predicting grain yield in most coun-
tries. For instance, in the U.S.A., the National Agricultural Statis-
tics Service (NASS) of the U.S. Department of Agriculture (USDA)
makes monthly predictions of agricultural yields based on sta-
tistical analyses of routine survey data. The survey includes in-
field observations of crop conditions in major crop-producing
states, as well as interviews with 5500e27,000 farm operators
via mail or phone calls (NASS, 2009a). Due to independent and
unbiased data collection for decades, the monthly yield projec-
tion based on regression analysis produce accurate results when
compared to final yield reports. However, in places lacking reli-
able and consistent long-term historical data, this approach is not
feasible.

Various drought indicators have been developed to automati-
cally classify drought severity since the 20th century (Heim Jr.
2002). The indices relevant to agricultural drought are usually
based on the parameters of precipitation, soil moisture, and tran-
spiration. These indices include MAI (moisture adequacy index,
McGuire and Palmer, 1957), CMI (crop moisture index, Palmer,
1968), CWSI (crop water stress index, Idso et al., 1981), SPI (stan-
dard precipitation index, McKee et al., 1993), SMDI (soil moisture
deficit index, Narasimhan and Srinivasan, 2005), SMI (soil moisture
index, Hunt et al., 2009), and ARID (the Agricultural Reference In-
dex for Drought, Woli et al., 2012). Comprehensive drought indices
such as PDSI (Palmer Drought Severity Index, Palmer, 1965) and DM
(Drought Monitor, Svoboda, 2000) also provide important infor-
mation for agricultural drought management. There are multiple
drought indices that are based on information from remote sensing
data, such as VCI (vegetation condition index, Kogan, 1995), and
NDWI (the normalized difference water index, Gao, 1996) for
classifying drought severity. Remote sensing has also been applied
to crop yield predictions (NASS, 2009b). The methods usually relate
historical records of crop yields to vegetation indices derived from
remote sensing data (Murthy et al., 1996; Kogan et al., 2005;
Sakamoto et al., 2013). However, this approach is constrained to
the time frame and geographical area of the study. Though some
regression-based models have been successfully generalized to
new areas, the nature of these methods is empirical, and they are
unlikely to predict crop yields under extreme conditions that are
beyond historical records (Moulin et al., 1998; Becker-Reshef et al.,
2010; Bolton and Friedl, 2013).

Crop models are considered to be valuable tools for improving
agricultural management and decision making. Most crop models
predict yields based on simulating physiological processes during
crop growth. These models include ELCROS (de Wit, 1965), CERES
(Jones and Kiniry, 1986), EPIC (Williams and Singh, 1995), APSIM
(McCown et al., 1996), ALMANAC (Kiniry et al., 1996), WOFOST
(Boogaard et al., 1998; Eitzinger et al., 2004), and AquaCrop
(Steduto et al., 2009). Another branch of models have been devel-
oped for simulating the biogeochemical processes such as carbon,
hydrogen, oxygen, nitrogen, and phosphorus cycles in agro-
ecosystems. Simulating crop growth to predict yields is also an
essential part of these biogeochemical models, such as DNDC (Li
et al., 2006; Zhang et al., 2002) and Century (Gilmanov et al.,
1997). Many of these models have been developed and evaluated
at the field scale rather than for large geographic regions (Palosuo
et al., 2011). Most existing crop models are complex, and require
a large number of input parameters that are not readily available
(Steduto et al., 2009). Without establishing detailed agricultural
databases, it is difficult to apply these models for large-scale sim-
ulations of crop growth.

One strength of using cropmodels for yield prediction is that the
models allow for a sensitivity analysis (Saltelli and Annoni, 2010;
Pogson et al., 2012; Wang et al., 2013) of how single input param-
eters affect crop growth and yield formation. For supporting
drought management, if the weather data can be input into crop
models, the drought-induced changes of soil moisture and yield
losses can be estimated. Most of the existing methods of providing
future weather data as model inputs are based on historical data.
For example, Du Toit and Du Toit (2003) compared the current
weather conditions with historical data to identify the five best
fitting years, and used the daily data for the rest of growing season
from these five analogue years. Bannayan et al. (2003) applied a
weather generator to create future weather data based on the
stochastic analysis of multiple-year historical data, and later
they (Bannayan and Hoogenboom, 2008) developed a weather
analogue tool for predicting daily weather data based on a modi-
fication of the k-nearest neighbor approach. In the current research,
in addition to historical weather data, we applied a scenario anal-
ysis approach to address the uncertainties of drought development
(Refsgaard et al., 2007; Warmink et al., 2010) and to provide in-
formation about the potential consequences for decision makers if
a given drought scenario is realized.

Beyond the efforts in yield forecasting, there is a need to facili-
tate analysis of past drought probability and permit dynamic
analysis of future drought scenarios. First, a stochastic analysis of
the drought probability is fundamental in risk management
because risk generally is considered as a combination of probability
and damage (Haynes et al., 2008). Second, using return periods
(e.g., a 100-year drought) for evaluating the severity of a natural
hazard is a widely accepted measurement for the public and deci-
sion makers. Quantitative analyses of drought return periods date
to work of Yevjevich (1967), who proposed the run concept for
identifying drought events and their statistical characteristics. Most
of these research efforts have been to derive drought return periods
based on hydrological series (Sen, 1980; Sharma, 1997; Clausen and
Pearson, 1995; Shiau and Shen, 2001; Shiau et al., 2007; Tarawneh
and Salas, 2009) or meteorological data (Gabriel and Neumann,
1962; Serinaldi et al., 2009; Mirakbari et al., 2010; Nú~nez et al.,
2011). For decision support of agricultural drought, however, it is
necessary to evaluate return periods based on drought-induced
yield losses. In addition, return periods are geographically scale-
dependent. For example, if a 100-year drought occurs in a state, it
does not imply the same severity for each county within this state;
instead, the county-level drought may be more or less severe than
the 100-year event. Quantitative evaluations of such scale-
dependent return periods have rarely been reported.

The objectives of the current paper are to describe a Drought
Risk Analysis System (DRAS) that allows the dynamic evaluation of
large-scale yield losses and the calculation of scale-dependent re-
turn periods for agricultural droughts based on yield prediction.
Using scenario analysis approaches, we applied the proposed sys-
tem to quantify drought impacts on corn yields during the 2012
drought in the U.S.A. and to the 2000 and 2009 droughts in
Liaoning Province, China. Remote sensing data were also used for
dynamic verification of the modeled results.

Section 2 introduces the methodology of the dynamic evalua-
tion and prediction of drought-induced yield losses, as well as the
software tool for supporting dynamic agricultural drought man-
agement. Section 3 demonstrates applications of the tool for
evaluating the daily impacts of the 2012 drought on corn in the
U.S.A., which applications are associated with remotely sensed
information. Section 4 illustrates the case of the droughts in
Liaoning Province, China, with a focus on the dynamic quantifi-
cation of spatially scale-dependent drought return periods based
on yield losses. The dynamic evaluation of the uncertainty of
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