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a b s t r a c t

Models are generally evaluated based on the squared error of model predictions compared with indi-
vidual data. However, if major interest is in some quantity averaged over time or space it would be more
pertinent to evaluate how well the model predicts this average quantity. We show that the model
squared error for predictions averaged over space or time will always be smaller than average squared
prediction error and how to estimate the difference between the two, using commonly available data. We
illustrate with two case studies concerning irrigation management, (where major interest is in yield
averaged over years) and nitrous oxide emissions (where major interest is in emissions averaged over a
growing season). Squared error of the average was estimated to be only 57% and 10% of the average
squared error for the irrigation and nitrous oxide emissions studies, respectively, in the limit of averaging
over long times.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Theworldwide agricultural sector faces the significant challenge
of increasing production to provide food security for a population
projected to rise to 9 billion by mid-century (Godfray et al., 2010;
Tilman et al., 2011) while protecting the environment and the
functioning of ecosystems (Carberry et al., 2013). The worldwide
agriculture sector faces these challenges while needing to both
adapt to climate change (Howden et al., 2007), including adapting to
increasedwaterdemandand reducedwateravailability (Turral et al.,
2011), and to mitigate emissions of greenhouse gasses (Smith et al.,
2008). Dynamic systemmodels will play an increasingly important
role in examining strategies to meet these unprecedented chal-
lenges, and there is a clear need to improve these models (R€otter
et al., 2011).

Model evaluation is an important aspect of modeling in general,
including integrated environmental modeling, water resources
modeling and crop modeling (Laniak et al., 2013; Bennett et al.,
2013; Warmink et al., 2010; Refsgaard et al., 2007). Multiple as-
pects of model evaluation and uncertainty have been considered
(Confalonieri et al., 2010; Varella et al., 2010; Saltelli and Annoni,

2010), and specialized software developed (Wallach et al., 2011).
Often however model error is not treated in detail during model
development and calibration (Ahuja and Ma, 2011) although there
is increasing attention being paid to understanding uncertainty of
predictions from agricultural models (Rosenzweig et al., 2013;
Asseng et al., 2013).

Evaluation of model performance is usually based on comparing
individual model predictions with corresponding data (i.e. one
predicted value with a corresponding measurement). For example,
one examines how well the model predicts yield in a given year
(e.g., R€otter et al., 2012; Asseng et al., 2013), or how well the model
predicts nitrous oxide (N2O) emissions from soil (Frolking et al.,
1998; Del Grosso et al., 2008; Thorburn et al., 2010a) or nitrate
leaching on a given day (Thorburn et al., 2011; Cichota et al., 2013).
Often, however, the individual predictions do not exactly corre-
spond to the major quantities of interest for decision-makers and
other output-oriented stakeholders. Major interest might be on the
probability of extreme events, or on some output averaged over
space or time, or on the stability of yield over time. Here we focus
on the case where major interest is in some quantity averaged over
time or space. For instance, in evaluating the impact of climate
change, often in practice one estimates future yield averaged over
several decades (Rosenzweig and Parry, 1994; Ferrara et al., 2010;
White et al., 2011). In comparing management strategies, we are
again often interested in performance averaged over future
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weather (Wallach et al., 2012; Biggs et al., 2013). In evaluating
greenhouse gas emissions, we are often most interested in total
emissions over some period, for example over the period of crop
growth or a year (Smith et al., 2008). In studying the impact of
farming systems on the use of, or effect on regional resources,
particularly water, we are often interested in averaging over
weather and summing over some region (Carroll et al., 2012). If
major interest is in quantities averaged over space and/or time,
then it would be more pertinent to evaluate how well the model
predicts the average quantity of interest rather than to evaluate the
model with respect to individual values. This will be especially
important if the difference between prediction quality in the two
cases is large.

There does not seem to have been any attempt to look in detail
at the differences between prediction accuracy for individual
quantities and prediction accuracy for averaged quantities. Specif-
ically, we would like to know if there is some general relationship
between how well models predict averages and how well they
predict individual quantities. Secondly, what determines the dif-
ferences in errors when predicting averages and when predicting
individual quantities? Thirdly, can we use commonly available data
to estimate the difference in errors between predicting averages
compared to predicting individual results?

The purpose of this paper then is to study the above three
questions. We first examine these questions theoretically, and then
consider two case studies, namely predicting yield averaged over
years for different irrigation strategies for maize, and predicting
N2O emissions averaged over days in different cropping systems.

2. Materials and methods

2.1. Theory

We consider the situation where we have contexts and repeated measurements
of some response for each context. We are interested in averages over the repeated
measures, for each context. For example, in one case study below the context is a site-
management combination, and the repeated measurements refer to measurements
of maize yield in several years. Here we are interested in model error averaged over
years, for each site-management combination. In the second case study, the context is
a site-year-management combination, and the repeated measurements are mea-
surements of N2O emissions on several days for each context. Herewe are interested
in model error averaged over days, for each site-year-management combination.

Let yij be the jth measured value for context i (e.g. the jth year of yield mea-
surement for the ith site-management combination). Let byij be the corresponding
simulated value, using some model. We can always write.

yij ¼ byij þ 3ij (1)

which simply says that model error, i.e. the difference between the measured and
simulated values, is noted 3ij.

In terms of the above notation, the average squared error for context i is.

aveSEi ¼ ð1=JÞ
XJ
j¼1

3
2
ij (2)

where J is the total number of measurements for context i. The squared error of the
average for context i (also referred to as squared bias) is
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The quantity aveSE is average model error for individual measurements, while
SEave measures how well the model predicts the average over measurements for a
given context.

According to the CauchyeSwartz inequality (Cvetkovski, 2010, Theorem 4.2 but
with a slight change in notation):
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where the aj and bj are arbitrary numbers. Setting all the bj ¼ 1 and aj¼ 3ij with fixed
i, the inequality becomes
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with equality only if all the model errors for context i are equal, which is never true.
In terms of the quantities defined above this says that.

aveSEi � SEavei � 0 (4)

That is, it is always true that the average squared error for the individual mea-
surements is greater than or equal to the squared error of the average of the mea-
surements. The inequality of Eq. (4) can also be deduced from the fact that average
squared error can be decomposed into 3 positive terms, one of which is squared bias
(Kobayashi and Salam, 2000).

We are interested in the difference between aveSE and SEave, and in the
behavior of SEave as a function of J. This will depend on the variability of 3ij for given
i. To describe this variability we propose to use a mixed effects model, with a bias
term that can be a nonlinear function of the explanatory variables in the original
model and a random context effect. The general form of the model that we propose
is.

3ij ¼ g
�
Xij; q

�þ ai þ tij (5)

The fixed effect g(Xij;q) can be a function of explanatory variables Xij and parameters
q. If there is some structure in the errors 3ij as a function of Xij, this will be embodied
in the fixed effect. If no structure is apparent, then the fixed effect will just be a
constant. The examples analyzed below cover both the case with and without
structure. ai is the random effect related to the context and tij is residual error.

We assume that all the ai have identical normal distributions with expectation
0 and that all the tij also have identical normal distributions with expectation 0. That
is.

ai � N
�
0; s2a

�
tij � N

�
0; s2t

� (6)

As discussed below, the assumption that random effects are normally distrib-
uted is often not critical. We further assume that all the random context effects ai are
independent (i.e. knowing the random effect for one context gives no information
about the random effect for other contexts), that given ai all the tij for that context i
are independent (i.e. once one has taken into account the random context effect,
there is no systematic relation between the residual errors for that context), and
finally that the ai and tij are all mutually independent (i.e. there is no systematic
relation between the random context effect and the residual errors).

We now look at the expectation of aveSE and SEave, where the expectation is
over contexts and over repeated measurements within a context. According to our
assumptions Eða2i Þ ¼ s2a , Eðt2ijÞ ¼ s2t , Eðtijti0 j0 Þ ¼ 0 for ijs i0j0 and E(aitij) ¼ 0 for all ij.
Then the expectations of interest are
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If g(Xij;q) is just a constant, say g(Xij;q) ¼ m, then the above equations simplify to

EðaveSEiÞ ¼ m2 þ s2a þ s2t (9)

and

EðSEaveiÞ ¼ m2 þ s2a þ s2t

.
J: (10)

The first two terms on the right hand side of Eqs. (9) and (10) are identical. That
is, the fixed bias (the term m2), and also the random context specific bias (the term
s2a), contribute equally to E(aveSEi) and to E(SEavei). The residual error on the other
hand contributes s2t to E(aveSEi) but only s2t=J to E(SEavei). In the more general case
(Eqs. (7) and (8)), there is an additional difference between E(aveSEi) and to
E(SEavei), due to the fact that ð1=JÞPJ

j¼1gðXij; qÞ2 and ð1=J2Þ½PJ
j¼1gðXij; qÞ�2 are in

general not equal. The former is the average of squared bias for the different con-
texts, and the latter is the square of the overall average bias.

We can estimate q, s2a and s2t using standard software for estimating the pa-
rameters of a nonlinear mixed model. In the case studies here we use the lmer
function which is part of the lme4 package of the R statistical software package (R
Development Core Team., 2013). This function is based on the algorithm proposed
in Lindstrom and Bates (1990), and uses restricted maximum likelihood (REML).
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