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a b s t r a c t

The development and application of evolutionary algorithms (EAs) and other metaheuristics for the
optimisation of water resources systems has been an active research field for over two decades. Research
to date has emphasized algorithmic improvements and individual applications in specific areas (e.g.
model calibration, water distribution systems, groundwater management, river-basin planning and
management, etc.). However, there has been limited synthesis between shared problem traits, common
EA challenges, and needed advances across major applications. This paper clarifies the current status and
future research directions for better solving key water resources problems using EAs. Advances in un-
derstanding fitness landscape properties and their effects on algorithm performance are critical. Future
EA-based applications to real-world problems require a fundamental shift of focus towards improving
problem formulations, understanding general theoretic frameworks for problem decompositions, major
advances in EA computational efficiency, and most importantly aiding real decision-making in complex,
uncertain application contexts.
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1. Introduction

1.1. Background

Environmental change, economic and social pressures, and
limited resources motivate systems analysis techniques that can
help planners determine new management strategies, develop
better designs and operational regimes, improve and calibrate
simulation models, and resolve conflicts between divergent
stakeholders. Metaheuristics are emerging as popular tools to
facilitate these tasks, and in the field of water resources, they have
been used extensively for a variety of purposes (e.g. model cali-
bration, the planning, design and operation of water resources
systems etc.) in many different application areas over the last few
decades (Nicklow et al., 2010). Since metaheuristics were first
applied in thewater resources field (Dougherty andMarryott,1991;
McKinney and Lin, 1994; Ritzel et al., 1994; Gupta et al., 1998), their
popularity has increased dramatically, probably facilitated by the
simultaneous increase of available computational power
(Washington et al., 2009), to the point where they are widely used
(Nicklow et al., 2010), even by actual water planning utilities
(Basdekas, 2014).

Zufferey (2012) defines a metaheuristic “as an iterative gener-
ation process which guides a subordinate heuristic by combining
intelligently different concepts for exploring and exploiting the
search space”, as part of which “learning strategies are used to
structure information in order to find efficiently near-optimal so-
lutions.” Unlike more “traditional” approaches, which use mathe-
matical programming to specify the optimal value of one or more
objective functions, metaheuristics incorporate elements of struc-
tured randomness for search and follow empirical guidelines, often
motivated by observations of natural phenomena (Collette and
Siarry, 2003).

Metaheuristics can be divided into two groups, including
population-based algorithms (e.g. genetic algorithms, evolutionary
strategies, particle swarm optimization, ant colony optimization,
etc.) and single point-based methods (e.g. simulated annealing,
tabu search, simple (1þ1) evolutionary strategies, trajectory or local
search methods, etc.). Evolutionary algorithms (EAs) are the most
well-established class of metaheuristics for solving water resources
problems and are inspired by various mechanisms of biological
evolution (e.g. reproduction, mutation, crossover, selection, etc.)
(Nicklow et al., 2010). Consequently, the focus of the remainder of
this paper is on EAs, although many of the concepts discussed also

broadly apply to other metaheuristics. The paper also provides
general guidelines and future research directions for the broader
class of systems analysis approaches that take any sort of optimi-
sation into account.

When using EAs, the steps in the optimisation process generally
include (Fig. 1):

1. Problem formulation (i.e. selection and definition of decision
variables, objectives, and constraints).

2. Selection of decision variable values.
3. Evaluation of objectives and constraints for the selected decision

variable values, which is generally done using one or more
simulation models.

4. Selection of an updated set of decision variable values based on
feedback received from the evaluation process using some
search methodology.

5. Repetition of points 3 and 4 until the selected stopping criterion
has been satisfied.

6. Passing the optimal solutions into an appropriate decision-
making process.

As outlined below, compared with more “traditional” optimi-
sation methods, EAs have a number of advantages, which are most
likely responsible for their widespread adoption for water re-
sources problems.

1. The basic analogies that inform their optimisation strategies are
conceptually easy to understand.

2. As simulation models are generally used to calculate objective
function values and check constraints, it is easy to add optimi-
sation to existing simulation approaches. This gives rise to the
potential for greater confidence in the results by end users, as
the outcomes of the optimisation process are based on the re-
sults of simulation tools that are already used for the purposes of
decision-making.

3. EAs are capable of solving problems with difficult mathematical
properties (Reed et al., 2013). This is because the ability to link
with simulation models reduces the need for problem simplifi-
cation, which is required for many traditional optimisation al-
gorithms that are unable to deal with nonlinearities (e.g. exact
finitely terminating algorithms, like linear and nonlinear pro-
gramming) or discontinuities (e.g. iterative/convergent algo-
rithms, such as first or second order gradient methods). For
example, in linear programming applications, there is no ability

Fig. 1. Steps in EA optimisation process, highlighting areas of current research focus. The square shapes represent the steps in the EA process and the oval shape represents a
decision point.
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