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a b s t r a c t

Selection of strategies that help reduce riverine inputs requires numerical models that accurately
quantify hydrologic processes. While numerous models exist, information on how to evaluate and select
the most robust models is limited. Toward this end, we developed a comprehensive approach that helps
evaluate watershed models in their ability to simulate flow regimes critical to downstream ecosystem
services. We demonstrated the method using the Soil and Water Assessment Tool (SWAT), the Hydro-
logical Simulation ProgrameFORTRAN (HSPF) model, and Distributed Large Basin Runoff Model (DLBRM)
applied to the Maumee River Basin (USA). The approach helped in identifying that each model simulated
flows within acceptable ranges. However, each was limited in its ability to simulate flows triggered by
extreme weather events, owing to algorithms not being optimized for such events and mismatched
physiographic watershed conditions. Ultimately, we found HSPF to best predict river flow, whereas SWAT
offered the most flexibility for evaluating agricultural management practices.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Many of the world's coastal and lake ecosystems that drain large
agricultural watersheds are experiencing degraded water quality,
including noxious algal blooms, hypoxia, and reduced water clarity
(Cloern, 2001; O'Neil et al., 2012;Diaz andRosenberg, 2008; Rabalais
et al., 2009;Michalak et al., 2013).Watershedflowregimeshavebeen
shown to be drivers of such conditions by influencing nutrient runoff

into the downstream environment (Donner et al., 2002; Vidon et al.,
2009), and therefore need to be considered in nutrient mitigation or
rehabilitation strategies (Royer et al., 2006; Scavia et al., 2014).
Numerous factors interact to govern river outflows from the water-
shed, including topography, meteorology (e.g., precipitation, tem-
perature), soil characteristics, and land-use practices and
management (DeFries and Eshleman, 2004). Owing to the
complexityof factors that control hydrologicprocesses,findingaway
to reliablymodelflow regimes that are critical to stream ecology and
downstream ecosystem services can be challenging. However, doing
so is absolutely critical, if land-use planners and water-quality
managers are to succeed in protecting downstream water bodies
(DeFries and Eshleman, 2004; Royer et al., 2006).

To help research and management communities make well-
informed choices regarding hydrology models, we describe a
comprehensive approach to evaluate model performance in pre-
dicting river flow regimes critical to downstream ecosystem ser-
vices. The approach was used to evaluate three commonly used
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watershed models, SWAT (version 528.0; Arnold et al., 1998),
DLBRM (version 2004; Croley and He, 2005) and HSPF (version
12.0; Bicknell et al., 2001), in their ability to accurately quantify
various flow-regime components of the Maumee River Basin, the
largest watershed in the Great Lakes region of North America. We
assessed the models in terms of (1) daily and monthly flow, (2)
flood and low-flow pulse frequency, magnitude and duration, and
(3) watershed response to extreme weather events. The models
also were compared in terms of their ease of use. While our model
comparison centers on the Maumee River watershed, our findings
should have general application to other large watersheds and
provide a better framework for future model assessment efforts.

2. Materials and methods

2.1. Performance assessment

Conducting performance evaluation of environmental models has attracted
increased attention in recent years, as multiple models targeting one specific
environmental problem have become more available. The answer to the question of
which one of availablemodels would better address a desired goal of modeling is not
trivial and approaches to conduct performance tests may vary with modeling ob-
jectives (Jakeman et al., 2006; Bennett et al., 2013). Difficulty of multi-model testing
increases with complexity of themodels involved and it is usually a time-consuming
task requiring knowledge of each model and input data preparation. While
numerous guidelines to measuring model performance have been proposed in the
literature, in this work an attempt was made to follow those proposed by Bennett
et al. (2013). These include defining modeling goals, selecting performance criteria
and developing methods for identifying systematic errors.

2.1.1. Modeling objectives
During the past decade, Lake Erie (USAeCanada), the smallest, shallowest, and

most biologically productive lake of the North American Great Lakes, has experi-
enced degraded water quality, including hypoxia (Hawley et al., 2006; Scavia et al.,
2014) and harmful algal blooms (Stumpf et al., 2012; Michalak et al., 2013). These
impairments have in large part been attributed to increased inputs of phosphorus-
rich water from catchment basins (Burns et al., 2005; Rucinski et al., 2010; Scavia
et al., 2014), including the Maumee River watershed, which is the largest water-
shed in the Lake Erie and Great Lakes basins. This watershed is dominated by
agriculture (>70%: Lake, 1978; NRCS, 2005) and contributes roughly 48% of the
phosphorus that enters western Lake Erie annually (Ohio EPA, 2010). Because Lake
Erie provides numerous economically important ecosystem services to the region
(e.g., fishing opportunities, drinking water supply, beach access) that depend on
water quality, state, provincial, and Federal agencies have a strong interest in un-
derstanding how land-use practices and climate operate independently and inter-
actively to influence inputs from the Maumee River watershed into downstream
Lake Erie (Ohio EPA, 2010).

While tillage and fertilizer application practices have been implicated in the
recent “re-eutrophication” of Lake Erie (Ohio EPA, 2010; Scavia et al., 2014),
increased precipitation-driven river discharge also has been shown to play a
dominant role. In fact, high river discharge from the Maumee River was found to be
the primary driver of record-breaking inputs of phosphorus and sediment into
western Lake Erie during 2007 (Richards et al., 2010) and the occurrence of the
largest recorded harmful algal bloom in Lake Erie during 2011 (Michalak et al., 2013).
Restoration of Lake Erie and its ecosystem services, as well as selection of watershed
management strategies, require the use of watershed models, which necessitates
testing of multiple hydrology/water quality models to select one that is suitable for
quantifying flow regimes critical to the nutrient flux entering Lake Erie.

While numerous watershed models exist, including Annualized Agricultural
Nonpoint Source (AnnAGNPS; Bingner et al., 2011), Areal Nonpoint Source Water-
shed Environment Response Simulation (ANSWERS-2000; Bouraoui and Dillaha,
1996), Hydrological Simulation Program e Fortran (HSPF; Bicknell et al., 2001),
Soil and Water Assessment Tool (SWAT; Arnold et al., 1998), Distributed Large Basin
Runoff Model (DLBRM; Croley and He, 2005), and MIKE SHE (Refsgaard and Storm,
1995), the ability of each to accurately model the flow regime of a river is likely to
differ. Differences among models can arise for many reasons, including their dif-
ferential use of algorithms to simulate overland flow and flow routing, how wa-
tersheds are disaggregated into spatial units, the time step used to calculate flow
components, and dissimilarities in their ability to consider multiple watershed at-
tributes (Borah and Bera, 2003; DeFries and Eshleman, 2004; Smith et al., 2004).
Hydrology models also can vary greatly in their input data, availability of pre-
processor and post-processor interfaces for data preparation and analysis, their
capability to simulate changes in climate, land use and land cover, and their flexi-
bility to allow specification of existing crop management practices (e.g., fertilizer
application, tillage method, tile drainage, crop rotation). Additionally, models can
vary in terms of availability of support, documentation and source code, and their
ease of modification for further development.

Despite the widespread and growing use of watershedmodels to simulate water
discharge and nutrient exports to downstreamwater bodies (Borah and Bera, 2003;
Smith et al., 2004), a comprehensive approach to evaluate the performance of
models for largewatersheds is conspicuously lacking. Indeed, previous performance
assessments of different models within a single watershed (e.g., Saleh and Du, 2004;
Im et al., 2007; Nasr et al., 2007), as well as multiple models across multiple wa-
tersheds (e.g., Distributed Model Intercomparison Project (DMIP-1,2): Reed et al.,
2004; Smith et al., 2004, 2012; Climate Impact Assessment Study: U.S. EPA, 2013),
support this contention. Previous studies that have assessed the performance of
models often only comparedmagnitudes of daily and (or) monthly predicted flow to
observed data in terms of one or two goodness-of-fit statistics (e.g., Smith et al.,
2004; Saleh and Du, 2004; Im et al., 2007; Nasr et al., 2007; U.S. EPA, 2013).
Further, while the DMIP-1,2 project was comprehensive (comparing performance of
20 models across multiple watersheds) and showed that distributed models can
supplement lumped models for operational flow forecasting, this effort focused on
small (<2500 km2) watersheds of less complexity in terms of land use and land
cover and did not assess the capacity of models to describe flow-regime components
important to driving conditions in downstream (receiving) ecosystems (Reed et al.,
2004; Smith et al., 2004, 2012). For this reason, a major knowledge gap exists with
respect to how well commonly used watershed models such as SWAT, HSPF, and
DLBRM can simulate river flow regimes for any size of watershed. Thus, while
classifying river flow into ecologically meaningful categories based on flow metrics
(e.g., timing, frequency, duration, flashiness, and magnitude of river discharge) has
become commonplace when assessing riverine inputs and their impact on down-
stream ecosystems services (Poff et al., 1997; Richter et al., 1996), how accurately
numerical watershed models predict these flow metrics remains largely unknown,
especially in large watersheds.

2.1.2. Selection of evaluation criteria
Models are assessed in terms of their ability to reproduce measurable behavior

of the simulated variables; however, the criteria for performance assessment can be
subjective or objective. Subjective criteria often involve visual inspections to
determine whether temporal and spatial behaviors of the variable being modeled
are reproduced, whereas objective criteria are quantitative scores computed from
known statistical error estimates between simulated and observed behavior (Krause
et al., 2005; Pushpalatha et al., 2012; Bennett et al., 2013). In hydrologic modeling
the use of both methods is advocated (Boyle et al., 2000; Bennett et al., 2013) for
determination of qualitative and quantitative assessment, both of which were
applied in our work.

2.1.2.1. Statistical goodness-of-fit metrics. While numerous goodness-of-fit (GOF)
criteria are available for model assessment, no one by itself is capable of fully
characterizing performance of a model (Krause et al., 2005). Instead, each criterion
has its own strength to depict certain aspects of a model that would not be obvious
otherwise. For this reason, to assess agreement between observed and simulated
daily flow, as well as monthly flow, we used a combination of GOF metrics (using R
software's “gof” package, Zambrano-Bigiarini, 2012) that are commonly used for
assessing model performance in hydrologic modeling. Metrics calculated included
the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970), coefficient of deter-
mination (R2), percent bias (PBIAS; Gupta et al., 1999), relative index of agreement
(rd; Willmott, 1981), mean absolute error (MAE), volumetric efficiency (VE) (Criss
and Winston, 2008), and root mean square error (RMSE). These metrics were
selected based on their merits to reflect different error estimates between simulated
and observed data. For example, R2 depicts the relationship between observed and
simulated flow in terms of percent variance explained, whereas MAE explains the
size of absolute error. PBIAS indicates if the model is under- or over-predicting
observed behavior, whereas VE depicts a volumetric fraction explained by the
model.

The NSE, which is the most widely used measure for assessing performance of
hydrologic models, was calculated by:

NSE ¼ 1�

2
64Pn

i¼1ðOi � SiÞ2Pn
i¼1

�
Oi � O

�2
3
75

where Oi is observed and Si is simulated flow at the ith time step. O is the average
value of observed flow during the calibration or validation period. The NSE ranges
between �∞ to 1, with a value of 1 indicating a perfect fit.

As with NSE, the R2, which represents the proportion of variance in the observed
data explained by the model, has been widely used to evaluate the predictive
capability of hydrology models (Moriasi et al., 2007; Gassman et al., 2007; Donigian
and Imhoff, 2009). It varies between 0 and 1, with 1 indicating that the variance in
observed data is fully explained by the model.

PBIAS measures the average deviation of simulated data from observed data
relative to observed data and is calculated as:

PBIAS ¼
�Pn

i¼1ðSi � OiÞ*100Pn
i¼1ðOiÞ

�

PBIAS ranges from �∞ to ∞, with 0 indicating no bias.
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